Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 22E65 ( Infinite-dimensional Lie groups and their Lie algebras: general properties [See also 17B65, 58B25, 58H05] )

  Expand all        Collapse all Results 1 - 7 of 7

1. CJM 2011 (vol 63 pp. 1364)

Meinrenken, Eckhard
The Cubic Dirac Operator for Infinite-Dimensonal Lie Algebras
Let $\mathfrak{g}=\bigoplus_{i\in\mathbb{Z}} \mathfrak{g}_i$ be an infinite-dimensional graded Lie algebra, with $\dim\mathfrak{g}_i<\infty$, equipped with a non-degenerate symmetric bilinear form $B$ of degree $0$. The quantum Weil algebra $\widehat{\mathcal{W}}\mathfrak{g}$ is a completion of the tensor product of the enveloping and Clifford algebras of $\mathfrak{g}$. Provided that the Kac-Peterson class of $\mathfrak{g}$ vanishes, one can construct a cubic Dirac operator $\mathcal{D}\in\widehat{\mathcal{W}}(\mathfrak{g})$, whose square is a quadratic Casimir element. We show that this condition holds for symmetrizable Kac-Moody algebras. Extending Kostant's arguments, one obtains generalized Weyl-Kac character formulas for suitable ``equal rank'' Lie subalgebras of Kac-Moody algebras. These extend the formulas of G. Landweber for affine Lie algebras.

Categories:22E65, 15A66

2. CJM 2011 (vol 63 pp. 1307)

Dimitrov, Ivan; Penkov, Ivan
A Bott-Borel-Weil Theorem for Diagonal Ind-groups
A diagonal ind-group is a direct limit of classical affine algebraic groups of growing rank under a class of inclusions that contains the inclusion $$ SL(n)\to SL(2n), \quad M\mapsto \begin{pmatrix}M & 0 \\ 0 & M \end{pmatrix} $$ as a typical special case. If $G$ is a diagonal ind-group and $B\subset G$ is a Borel ind-subgroup, we consider the ind-variety $G/B$ and compute the cohomology $H^\ell(G/B,\mathcal{O}_{-\lambda})$ of any $G$-equivariant line bundle $\mathcal{O}_{-\lambda}$ on $G/B$. It has been known that, for a generic $\lambda$, all cohomology groups of $\mathcal{O}_{-\lambda}$ vanish, and that a non-generic equivariant line bundle $\mathcal{O}_{-\lambda}$ has at most one nonzero cohomology group. The new result of this paper is a precise description of when $H^j(G/B,\mathcal{O}_{-\lambda})$ is nonzero and the proof of the fact that, whenever nonzero, $H^j(G/B, \mathcal{O}_{-\lambda})$ is a $G$-module dual to a highest weight module. The main difficulty is in defining an appropriate analog $W_B$ of the Weyl group, so that the action of $W_B$ on weights of $G$ is compatible with the analog of the Demazure ``action" of the Weyl group on the cohomology of line bundles. The highest weight corresponding to $H^j(G/B, \mathcal{O}_{-\lambda})$ is then computed by a procedure similar to that in the classical Bott-Borel-Weil theorem.

Categories:22E65, 20G05

3. CJM 2003 (vol 55 pp. 969)

Glöckner, Helge
Lie Groups of Measurable Mappings
We describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space $(X,\Sigma,\mu)$ and (possibly infinite-dimensional) Lie group $G$, we construct a Lie group $L^\infty (X,G)$, which is a Fr\'echet-Lie group if $G$ is so. We also show that the weak direct product $\prod^*_{i\in I} G_i$ of an arbitrary family $(G_i)_{i\in I}$ of Lie groups can be made a Lie group, modelled on the locally convex direct sum $\bigoplus_{i\in I} L(G_i)$.

Categories:22E65, 46E40, 46E30, 22E67, 46T20, 46T25

4. CJM 2001 (vol 53 pp. 278)

Helminck, G. F.; van de Leur, J. W.
Darboux Transformations for the KP Hierarchy in the Segal-Wilson Setting
In this paper it is shown that inclusions inside the Segal-Wilson Grassmannian give rise to Darboux transformations between the solutions of the $\KP$ hierarchy corresponding to these planes. We present a closed form of the operators that procure the transformation and express them in the related geometric data. Further the associated transformation on the level of $\tau$-functions is given.

Keywords:KP hierarchy, Darboux transformation, Grassmann manifold
Categories:22E65, 22E70, 35Q53, 35Q58, 58B25

5. CJM 2001 (vol 53 pp. 195)

Mokler, Claus
On the Steinberg Map and Steinberg Cross-Section for a Symmetrizable Indefinite Kac-Moody Group
Let $G$ be a symmetrizable indefinite Kac-Moody group over $\C$. Let $\Tr_{\La_1},\dots,\Tr_{\La_{2n-l}}$ be the characters of the fundamental irreducible representations of $G$, defined as convergent series on a certain part $G^{\tralg} \subseteq G$. Following Steinberg in the classical case and Br\"uchert in the affine case, we define the Steinberg map $\chi := (\Tr_{\La_1},\dots, \Tr_{\La_{2n-l}})$ as well as the Steinberg cross section $C$, together with a natural parametrisation $\omega \colon \C^{n} \times (\C^\times)^{\,n-l} \to C$. We investigate the local behaviour of $\chi$ on $C$ near $\omega \bigl( (0,\dots,0) \times (1,\dots,1) \bigr)$, and we show that there exists a neighborhood of $(0,\dots,0) \times (1,\dots,1)$, on which $\chi \circ \omega$ is a regular analytical map, satisfying a certain functional identity. This identity has its origin in an action of the center of $G$ on~$C$.

Categories:22E65, 17B65

6. CJM 1998 (vol 50 pp. 972)

Brüchert, Gerd
Trace class elements and cross-sections in Kac-Moody groups
Let $G$ be an affine Kac-Moody group, $\pi_0,\dots,\pi_r,\pi_{\delta}$ its fundamental irreducible representations and $\chi_0, \dots, \chi_r, \chi_{\delta}$ their characters. We determine the set of all group elements $x$ such that all $\pi_i(x)$ act as trace class operators, \ie, such that $\chi_i(x)$ exists, then prove that the $\chi_i$ are class functions. Thus, $\chi:=(\chi_0, \dots, \chi_r, \chi_{\delta})$ factors to an adjoint quotient $\bar{\chi}$ for $G$. In a second part, following Steinberg, we define a cross-section $C$ for the potential regular classes in $G$. We prove that the restriction $\chi|_C$ behaves well algebraically. Moreover, we obtain an action of $\hbox{\Bbbvii C}^{\times}$ on $C$, which leads to a functional identity for $\chi|_C$ which shows that $\chi|_C$ is quasi-homogeneous.

Categories:22E65, 17B67

7. CJM 1997 (vol 49 pp. 820)

Robart, Thierry
Sur l'intégrabilité des sous-algèbres de Lie en dimension infinie
Une des questions fondamentales de la th\'eorie des groupes de Lie de dimension infinie concerne l'int\'egrabilit\'e des sous-alg\`ebres de Lie topologiques $\cal H$ de l'alg\`ebre de Lie $\cal G$ d'un groupe de Lie $G$ de dimension infinie au sens de Milnor. Par contraste avec ce qui se passe en th\'eorie classique il peut exister des sous-alg\`ebres de Lie ferm\'ees $\cal H$ de $\cal G$ non-int\'egrables en un sous-groupe de Lie. C'est le cas des alg\`ebres de Lie de champs de vecteurs $C^{\infty}$ d'une vari\'et\'e compacte qui ne d\'efinissent pas un feuilletage de Stefan. Heureusement cette ``imperfection" de la th\'eorie n'est pas partag\'ee par tous les groupes de Lie int\'eressants. C'est ce que montre cet article en exhibant une tr\`es large classe de groupes de Lie de dimension infinie exempte de cette imperfection. Cela permet de traiter compl\`etement le second probl\`eme fondamental de Sophus Lie pour les groupes de jauge de la physique-math\'ematique et les groupes formels de diff\'eomorphismes lisses de $\R^n$ qui fixent l'origine.

Categories:22E65, 58h05, 17B65

© Canadian Mathematical Society, 2014 :