1. CJM 2013 (vol 66 pp. 566)
 Choiy, Kwangho

Transfer of Plancherel Measures for Unitary Supercuspidal Representations between $p$adic Inner Forms
Let $F$ be a $p$adic field of characteristic $0$, and let $M$ be an $F$Levi subgroup of a connected reductive $F$split group such that $\Pi_{i=1}^{r} SL_{n_i} \subseteq M \subseteq \Pi_{i=1}^{r} GL_{n_i}$ for positive integers $r$ and $n_i$. We prove that the Plancherel measure for any unitary supercuspidal representation of $M(F)$ is identically transferred under the local JacquetLanglands type correspondence between $M$ and its $F$inner forms, assuming a working hypothesis that Plancherel measures are invariant on a certain set. This work extends the result of
MuiÄ and Savin (2000) for Siegel Levi subgroups of the groups $SO_{4n}$ and $Sp_{4n}$ under the local JacquetLanglands correspondence. It can be applied to a simply connected simple $F$group of type $E_6$ or $E_7$, and a connected reductive $F$group of type $A_{n}$, $B_{n}$, $C_n$ or $D_n$.
Keywords:Plancherel measure, inner form, local to global global argument, cuspidal automorphic representation, JacquetLanglands correspondence Categories:22E50, 11F70, 22E55, 22E35 

2. CJM 2009 (vol 61 pp. 779)
 Grbac, Neven

Residual Spectra of Split Classical Groups and their Inner Forms
This paper is concerned with the residual spectrum of the
hermitian quaternionic classical groups $G_n'$ and $H_n'$ defined
as algebraic groups for a quaternion algebra over an algebraic
number field. Groups $G_n'$ and
$H_n'$ are not quasisplit. They are inner forms of the split
groups $\SO_{4n}$ and $\Sp_{4n}$. Hence, the parts of the residual
spectrum of $G_n'$ and $H_n'$ obtained in this paper are compared
to the corresponding parts for the split groups $\SO_{4n}$ and
$\Sp_{4n}$.
Categories:11F70, 22E55 

3. CJM 2005 (vol 57 pp. 535)
 Kim, Henry H.

On Local $L$Functions and Normalized Intertwining Operators
In this paper we make explicit all $L$functions in the
LanglandsShahidi method which appear as normalizing factors of
global intertwining operators in the constant term of the
Eisenstein series. We prove, in many cases,
the conjecture of Shahidi regarding the
holomorphy of the local $L$functions. We also prove
that the normalized local intertwining operators are holomorphic and
nonvaninishing for $\re(s)\geq 1/2$ in many cases. These local
results are essential in global applications such as Langlands
functoriality, residual spectrum and determining poles of
automorphic $L$functions.
Categories:11F70, 22E55 

4. CJM 2004 (vol 56 pp. 168)
 Pogge, James Todd

On a Certain Residual Spectrum of $\Sp_8$
Let $G=\Sp_{2n}$ be the symplectic group defined over a number
field $F$. Let $\mathbb{A}$ be the ring of adeles. A fundamental
problem in the theory of automorphic forms is to decompose the
right regular representation of $G(\mathbb{A})$ acting on the
Hilbert space $L^2\bigl(G(F)\setminus G(\mathbb{A})\bigr)$. Main
contributions have been made by Langlands. He described, using his
theory of Eisenstein series, an orthogonal decomposition of this
space of the form: $L_{\dis}^2 \bigl( G(F)\setminus G(\mathbb{A})
\bigr)=\bigoplus_{(M,\pi)} L_{\dis}^2(G(F) \setminus G(\mathbb{A})
\bigr)_{(M,\pi)}$, where $(M,\pi)$ is a Levi subgroup with a
cuspidal automorphic representation $\pi$ taken modulo conjugacy
(Here we normalize $\pi$ so that the action of the maximal split
torus in the center of $G$ at the archimedean places is trivial.)
and $L_{\dis}^2\bigl(G(F)\setminus G(\mathbb{A})\bigr)_{(M,\pi)}$
is a space of residues of Eisenstein series associated to
$(M,\pi)$. In this paper, we will completely determine the space
$L_{\dis}^2\bigl(G(F)\setminus G(\mathbb{A})\bigr)_{(M,\pi)}$, when
$M\simeq\GL_2\times\GL_2$. This is the first result on the
residual spectrum for nonmaximal, nonBorel parabolic subgroups,
other than $\GL_n$.
Categories:11F70, 22E55 
