CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 22E50 ( Representations of Lie and linear algebraic groups over local fields [See also 20G05] )

  Expand all        Collapse all Results 1 - 25 of 45

1. CJM Online first

Pan, Shu-Yen
$L$-Functoriality for Local Theta Correspondence of Supercuspidal Representations with Unipotent Reduction
The preservation principle of local theta correspondences of reductive dual pairs over a $p$-adic field predicts the existence of a sequence of irreducible supercuspidal representations of classical groups. Adams/Harris-Kudla-Sweet have a conjecture about the Langlands parameters for the sequence of supercuspidal representations. In this paper we prove modified versions of their conjectures for the case of supercuspidal representations with unipotent reduction.

Keywords:local theta correspondence, supercuspidal representation, preservation principle, Langlands functoriality
Categories:22E50, 11F27, 20C33

2. CJM Online first

Xu, Bin
On Moeglin's parametrization of Arthur packets for p-adic quasisplit $Sp(N)$ and $SO(N)$
We give a survey on Moeglin's construction of representations in the Arthur packets for $p$-adic quasisplit symplectic and orthogonal groups. The emphasis is on comparing Moeglin's parametrization of elements in the Arthur packets with that of Arthur.

Keywords:symplectic and orthogonal group, Arthur packet, endoscopy
Categories:22E50, 11F70

3. CJM Online first

Varma, Sandeep
On Residues of Intertwining Operators in Cases with Prehomogeneous Nilradical
Let $\operatorname{P} = \operatorname{M} \operatorname{N}$ be a Levi decomposition of a maximal parabolic subgroup of a connected reductive group $\operatorname{G}$ over a $p$-adic field $F$. Assume that there exists $w_0 \in \operatorname{G}(F)$ that normalizes $\operatorname{M}$ and conjugates $\operatorname{P}$ to an opposite parabolic subgroup. When $\operatorname{N}$ has a Zariski dense $\operatorname{Int} \operatorname{M}$-orbit, F. Shahidi and X. Yu describe a certain distribution $D$ on $\operatorname{M}(F)$ such that, for irreducible unitary supercuspidal representations $\pi$ of $\operatorname{M}(F)$ with $\pi \cong \pi \circ \operatorname{Int} w_0$, $\operatorname{Ind}_{\operatorname{P}(F)}^{\operatorname{G}(F)} \pi$ is irreducible if and only if $D(f) \neq 0$ for some pseudocoefficient $f$ of $\pi$. Since this irreducibility is conjecturally related to $\pi$ arising via transfer from certain twisted endoscopic groups of $\operatorname{M}$, it is of interest to realize $D$ as endoscopic transfer from a simpler distribution on a twisted endoscopic group $\operatorname{H}$ of $\operatorname{M}$. This has been done in many situations where $\operatorname{N}$ is abelian. Here, we handle the `standard examples' in cases where $\operatorname{N}$ is nonabelian but admits a Zariski dense $\operatorname{Int} \operatorname{M}$-orbit.

Keywords:induced representation, intertwining operator, endoscopy
Categories:22E50, 11F70

4. CJM Online first

Kamgarpour, Masoud
On the notion of conductor in the local geometric Langlands correspondence
Under the local Langlands correspondence, the conductor of an irreducible representation of $\operatorname{Gl}_n(F)$ is greater than the Swan conductor of the corresponding Galois representation. In this paper, we establish the geometric analogue of this statement by showing that the conductor of a categorical representation of the loop group is greater than the irregularity of the corresponding meromorphic connection.

Keywords:local geometric Langlands, connections, cyclic vectors, opers, conductors, Segal-Sugawara operators, Chervov-Molev operators, critical level, smooth representations, affine Kac-Moody algebra, categorical representations
Categories:17B67, 17B69, 22E50, 20G25

5. CJM 2014 (vol 66 pp. 993)

Beuzart-Plessis, Raphaël
Expression d'un facteur epsilon de paire par une formule intégrale
Let $E/F$ be a quadratic extension of $p$-adic fields and let $d$, $m$ be nonnegative integers of distinct parities. Fix admissible irreducible tempered representations $\pi$ and $\sigma$ of $GL_d(E)$ and $GL_m(E)$ respectively. We assume that $\pi$ and $\sigma$ are conjugate-dual. That is to say $\pi\simeq \pi^{\vee,c}$ and $\sigma\simeq \sigma^{\vee,c}$ where $c$ is the non trivial $F$-automorphism of $E$. This implies, we can extend $\pi$ to an unitary representation $\tilde{\pi}$ of a nonconnected group $GL_d(E)\rtimes \{1,\theta\}$. Define $\tilde{\sigma}$ the same way. We state and prove an integral formula for $\epsilon(1/2,\pi\times \sigma,\psi_E)$ involving the characters of $\tilde{\pi}$ and $\tilde{\sigma}$. This formula is related to the local Gan-Gross-Prasad conjecture for unitary groups.

Keywords:epsilon factor, twisted groups
Categories:22E50, 11F85

6. CJM 2013 (vol 66 pp. 1287)

Henniart, Guy; Sécherre, Vincent
Types et contragrédientes
Soit $\mathrm{G}$ un groupe réductif $p$-adique, et soit $\mathrm{R}$ un corps algébriquement clos. Soit $\pi$ une représentation lisse de $\mathrm{G}$ dans un espace vectoriel $\mathrm{V}$ sur $\mathrm{R}$. Fixons un sous-groupe ouvert et compact $\mathrm{K}$ de $\mathrm{G}$ et une représentation lisse irréductible $\tau$ de $\mathrm{K}$ dans un espace vectoriel $\mathrm{W}$ de dimension finie sur $\mathrm{R}$. Sur l'espace $\mathrm{Hom}_{\mathrm{K}(\mathrm{W},\mathrm{V})}$ agit l'algèbre d'entrelacement $\mathscr{H}(\mathrm{G},\mathrm{K},\mathrm{W})$. Nous examinons la compatibilité de ces constructions avec le passage aux représentations contragrédientes $\mathrm{V}^ėe$ et $\mathrm{W}^ėe$, et donnons en particulier des conditions sur $\mathrm{W}$ ou sur la caractéristique de $\mathrm{R}$ pour que le comportement soit semblable au cas des représentations complexes. Nous prenons un point de vue abstrait, n'utilisant que des propriétés générales de $\mathrm{G}$. Nous terminons par une application à la théorie des types pour le groupe $\mathrm{GL}_n$ et ses formes intérieures sur un corps local non archimédien.

Keywords:modular representations of p-adic reductive groups, types, contragredient, intertwining
Category:22E50

7. CJM 2013 (vol 66 pp. 241)

Broussous, P.
Transfert du pseudo-coefficient de Kottwitz et formules de caractère pour la série discrète de $\mathrm{GL}(N)$ sur un corps local
Soit $G$ le groupe $\mathrm{GL}(N,F)$, où $F$ est un corps localement compact et non archimédien. En utilisant la théorie des types simples de Bushnell et Kutzko, ainsi qu'une idée originale d'Henniart, nous construisons des pseudo-coefficients explicites pour les représentations de la série discrète de $G$. Comme application, nous en déduisons des formules inédites pour la valeur du charactère d'Harish-Chandra de certaines telles représentations en certains éléments elliptiques réguliers.

Keywords:reductive p-adic groups , discrete series, Harish-Chandra character, pseudo-coefficient
Category:22E50

8. CJM 2013 (vol 66 pp. 566)

Choiy, Kwangho
Transfer of Plancherel Measures for Unitary Supercuspidal Representations between $p$-adic Inner Forms
Let $F$ be a $p$-adic field of characteristic $0$, and let $M$ be an $F$-Levi subgroup of a connected reductive $F$-split group such that $\Pi_{i=1}^{r} SL_{n_i} \subseteq M \subseteq \Pi_{i=1}^{r} GL_{n_i}$ for positive integers $r$ and $n_i$. We prove that the Plancherel measure for any unitary supercuspidal representation of $M(F)$ is identically transferred under the local Jacquet-Langlands type correspondence between $M$ and its $F$-inner forms, assuming a working hypothesis that Plancherel measures are invariant on a certain set. This work extends the result of Muić and Savin (2000) for Siegel Levi subgroups of the groups $SO_{4n}$ and $Sp_{4n}$ under the local Jacquet-Langlands correspondence. It can be applied to a simply connected simple $F$-group of type $E_6$ or $E_7$, and a connected reductive $F$-group of type $A_{n}$, $B_{n}$, $C_n$ or $D_n$.

Keywords:Plancherel measure, inner form, local to global global argument, cuspidal automorphic representation, Jacquet-Langlands correspondence
Categories:22E50, 11F70, 22E55, 22E35

9. CJM 2012 (vol 64 pp. 497)

Li, Wen-Wei
Le lemme fondamental pondéré pour le groupe métaplectique
Dans cet article, on énonce une variante du lemme fondamental pondéré d'Arthur pour le groupe métaplectique de Weil, qui sera un ingrédient indispensable de la stabilisation de la formule des traces. Pour un corps de caractéristique résiduelle suffisamment grande, on en donne une démonstration à l'aide de la méthode de descente, qui est conditionnelle: on admet le lemme fondamental pondéré non standard sur les algèbres de Lie. Vu les travaux de Chaudouard et Laumon, on s'attend à ce que cette condition soit ultérieurement vérifiée.

Keywords:fundamental lemma, metaplectic group, endoscopy, trace formula
Categories:11F70, 11F27, 22E50

10. CJM 2011 (vol 63 pp. 1238)

Bump, Daniel; Nakasuji, Maki
Casselman's Basis of Iwahori Vectors and the Bruhat Order
W. Casselman defined a basis $f_u$ of Iwahori fixed vectors of a spherical representation $(\pi, V)$ of a split semisimple $p$-adic group $G$ over a nonarchimedean local field $F$ by the condition that it be dual to the intertwining operators, indexed by elements $u$ of the Weyl group $W$. On the other hand, there is a natural basis $\psi_u$, and one seeks to find the transition matrices between the two bases. Thus, let $f_u = \sum_v \tilde{m} (u, v) \psi_v$ and $\psi_u = \sum_v m (u, v) f_v$. Using the Iwahori-Hecke algebra we prove that if a combinatorial condition is satisfied, then $m (u, v) = \prod_{\alpha} \frac{1 - q^{- 1} \mathbf{z}^{\alpha}}{1 -\mathbf{z}^{\alpha}}$, where $\mathbf z$ are the Langlands parameters for the representation and $\alpha$ runs through the set $S (u, v)$ of positive coroots $\alpha \in \hat{\Phi}$ (the dual root system of $G$) such that $u \leqslant v r_{\alpha} < v$ with $r_{\alpha}$ the reflection corresponding to $\alpha$. The condition is conjecturally always satisfied if $G$ is simply-laced and the Kazhdan-Lusztig polynomial $P_{w_0 v, w_0 u} = 1$ with $w_0$ the long Weyl group element. There is a similar formula for $\tilde{m}$ conjecturally satisfied if $P_{u, v} = 1$. This leads to various combinatorial conjectures.

Keywords:Iwahori fixed vector, Iwahori Hecke algebra, Bruhat order, intertwining integrals
Categories:20C08, 20F55, 22E50

11. CJM 2011 (vol 63 pp. 1137)

Moy, Allen
Distribution Algebras on p-adic Groups and Lie Algebras
When $F$ is a $p$-adic field, and $G={\mathbb G}(F)$ is the group of $F$-rational points of a connected algebraic $F$-group, the complex vector space ${\mathcal H}(G)$ of compactly supported locally constant distributions on $G$ has a natural convolution product that makes it into a ${\mathbb C}$-algebra (without an identity) called the Hecke algebra. The Hecke algebra is a partial analogue for $p$-adic groups of the enveloping algebra of a Lie group. However, $\mathcal{H}(G)$ has drawbacks such as the lack of an identity element, and the process $G \mapsto \mathcal{H}(G)$ is not a functor. Bernstein introduced an enlargement $\mathcal{H}\,\hat{\,}(G)$ of $\mathcal{H}(G)$. The algebra $\mathcal{H}\,\hat{\,} (G)$ consists of the distributions that are left essentially compact. We show that the process $G \mapsto \mathcal{H}\,\hat{\,} (G)$ is a functor. If $\tau \colon G \rightarrow H$ is a morphism of $p$-adic groups, let $F(\tau) \colon \mathcal{H}\,\hat{\,} (G) \rightarrow \mathcal{H}\,\hat{\,} (H)$ be the morphism of $\mathbb{C}$-algebras. We identify the kernel of $F(\tau)$ in terms of $\textrm{Ker}(\tau)$. In the setting of $p$-adic Lie algebras, with $\mathfrak{g}$ a reductive Lie algebra, $\mathfrak{m}$ a Levi, and $\tau \colon \mathfrak{g} \to \mathfrak{m}$ the natural projection, we show that $F(\tau)$ maps $G$-invariant distributions on $\mathcal{G}$ to $N_G (\mathfrak{m})$-invariant distributions on $\mathfrak{m}$. Finally, we exhibit a natural family of $G$-invariant essentially compact distributions on $\mathfrak{g}$ associated with a $G$-invariant non-degenerate symmetric bilinear form on ${\mathfrak g}$ and in the case of $SL(2)$ show how certain members of the family can be moved to the group.

Keywords:distribution algebra, p-adic group
Categories:22E50, 22E35

12. CJM 2011 (vol 63 pp. 1107)

Liu, Baiying
Genericity of Representations of p-Adic $Sp_{2n}$ and Local Langlands Parameters
Let $G$ be the $F$-rational points of the symplectic group $Sp_{2n}$, where $F$ is a non-Archimedean local field of characteristic $0$. Cogdell, Kim, Piatetski-Shapiro, and Shahidi constructed local Langlands functorial lifting from irreducible generic representations of $G$ to irreducible representations of $GL_{2n+1}(F)$. Jiang and Soudry constructed the descent map from irreducible supercuspidal representations of $GL_{2n+1}(F)$ to those of $G$, showing that the local Langlands functorial lifting from the irreducible supercuspidal generic representations is surjective. In this paper, based on above results, using the same descent method of studying $SO_{2n+1}$ as Jiang and Soudry, we will show the rest of local Langlands functorial lifting is also surjective, and for any local Langlands parameter $\phi \in \Phi(G)$, we construct a representation $\sigma$ such that $\phi$ and $\sigma$ have the same twisted local factors. As one application, we prove the $G$-case of a conjecture of Gross-Prasad and Rallis, that is, a local Langlands parameter $\phi \in \Phi(G)$ is generic, i.e., the representation attached to $\phi$ is generic, if and only if the adjoint $L$-function of $\phi$ is holomorphic at $s=1$. As another application, we prove for each Arthur parameter $\psi$, and the corresponding local Langlands parameter $\phi_{\psi}$, the representation attached to $\phi_{\psi}$ is generic if and only if $\phi_{\psi}$ is tempered.

Keywords:generic representations, local Langlands parameters
Categories:22E50, 11S37

13. CJM 2011 (vol 63 pp. 591)

Hanzer, Marcela; Muić, Goran
Rank One Reducibility for Metaplectic Groups via Theta Correspondence
We calculate reducibility for the representations of metaplectic groups induced from cuspidal representations of maximal parabolic subgroups via theta correspondence, in terms of the analogous representations of the odd orthogonal groups. We also describe the lifts of all relevant subquotients.

Categories:22E50, 11F70

14. CJM 2011 (vol 63 pp. 327)

Jantzen, Chris
Discrete Series for $p$-adic $SO(2n)$ and Restrictions of Representations of $O(2n)$
In this paper we give a classification of discrete series for $SO(2n,F)$, $F$ $p$-adic, similar to that of Mœglin--Tadić for the other classical groups. This is obtained by taking the Mœglin--Tadić classification for $O(2n,F)$ and studying how the representations restrict to $SO(2n,F)$. We then extend this to an analysis of how admissible representations of $O(2n,F)$ restrict.

Category:22E50

15. CJM 2010 (vol 62 pp. 1340)

Mœglin, C.
Holomorphie des opérateurs d'entrelacement normalisés à l'aide des paramètres d'Arthur
In this paper we prove holomorphy for certain intertwining operators arising from the theory of Eisenstein series. To do that we need to normalize using the Langlands--Shahidi's normalization arising from the twisted endoscopy and the associated representations of the general linear group.

Categories:22E50, 22E35

16. CJM 2010 (vol 62 pp. 1310)

Lee, Kyu-Hwan
Iwahori--Hecke Algebras of $SL_2$ over $2$-Dimensional Local Fields
In this paper we construct an analogue of Iwahori--Hecke algebras of $\operatorname{SL}_2$ over $2$-dimensional local fields. After considering coset decompositions of double cosets of a Iwahori subgroup, we define a convolution product on the space of certain functions on $\operatorname{SL}_2$, and prove that the product is well-defined, obtaining a Hecke algebra. Then we investigate the structure of the Hecke algebra. We determine the center of the Hecke algebra and consider Iwahori--Matsumoto type relations.

Categories:22E50, 20G25

17. CJM 2010 (vol 62 pp. 914)

Zorn, Christian
Reducibility of the Principal Series for Sp~2(F) over a p-adic Field
Let $G_n=\mathrm{Sp}_n(F)$ be the rank $n$ symplectic group with entries in a nondyadic $p$-adic field $F$. We further let $\widetilde{G}_n$ be the metaplectic extension of $G_n$ by $\mathbb{C}^{1}=\{z\in\mathbb{C}^{\times} \mid |z|=1\}$ defined using the Leray cocycle. In this paper, we aim to demonstrate the complete list of reducibility points of the genuine principal series of ${\widetilde{G}_2}$. In most cases, we will use some techniques developed by Tadić that analyze the Jacquet modules with respect to all of the parabolics containing a fixed Borel. The exceptional cases involve representations induced from unitary characters $\chi$ with $\chi^2=1$. Because such representations $\pi$ are unitary, to show the irreducibility of $\pi$, it suffices to show that $\dim_{\mathbb{C}}\mathrm{Hom}_{{\widetilde{G}}}(\pi,\pi)=1$. We will accomplish this by examining the poles of certain intertwining operators associated to simple roots. Then some results of Shahidi and Ban decompose arbitrary intertwining operators into a composition of operators corresponding to the simple roots of ${\widetilde{G}_2}$. We will then be able to show that all such operators have poles at principal series representations induced from quadratic characters and therefore such operators do not extend to operators in $\mathrm{Hom}_{{\widetilde{G}_2}}(\pi,\pi)$ for the $\pi$ in question.

Categories:22E50, 11F70

18. CJM 2009 (vol 62 pp. 94)

Kuo, Wentang
The Langlands Correspondence on the Generic Irreducible Constituents of Principal Series
Let $G$ be a connected semisimple split group over a $p$-adic field. We establish the explicit link between principal nilpotent orbits and the irreducible constituents of principal series in terms of $L$-group objects.

Keywords:Langlands correspondence, nilpotent orbits, principal series
Categories:22E50, 22E35

19. CJM 2009 (vol 61 pp. 1325)

Nien, Chufeng
Uniqueness of Shalika Models
Let $\BF_q$ be a finite field of $q$ elements, $\CF$ a $p$-adic field, and $D$ a quaternion division algebra over $\CF$. This paper proves uniqueness of Shalika models for $\GL_{2n}(\BF_q) $ and $\GL_{2n}(D)$, and re-obtains uniqueness of Shalika models for $\GL_{2n}(\CF)$ for any $n\in \BN$.

Keywords:Shalika models, linear models, uniqueness, multiplicity free
Category:22E50

20. CJM 2009 (vol 61 pp. 691)

Yu, Xiaoxiang
Prehomogeneity on Quasi-Split Classical Groups and Poles of Intertwining Operators
Suppose that $P=MN$ is a maximal parabolic subgroup of a quasisplit, connected, reductive classical group $G$ defined over a non-Archimedean field and $A$ is the standard intertwining operator attached to a tempered representation of $G$ induced from $M$. In this paper we determine all the cases in which $\Lie(N)$ is prehomogeneous under $\Ad(m)$ when $N$ is non-abelian, and give necessary and sufficient conditions for $A$ to have a pole at $0$.

Categories:22E50, 20G05

21. CJM 2009 (vol 61 pp. 427)

Tadi\'c, Marko
On Reducibility and Unitarizability for Classical $p$-Adic Groups, Some General Results
The aim of this paper is to prove two general results on parabolic induction of classical $p$-adic groups (actually, one of them holds also in the archimedean case), and to obtain from them some consequences about irreducible unitarizable representations. One of these consequences is a reduction of the unitarizability problem for these groups. This reduction is similar to the reduction of the unitarizability problem to the case of real infinitesimal character for real reductive groups.

Categories:22E50, 22E35

22. CJM 2009 (vol 61 pp. 222)

Nien, Chufeng
Klyachko Models for General Linear Groups of Rank 5 over a $p$-Adic Field
This paper shows the existence and uniqueness of Klyachko models for irreducible unitary representations of $\GL_5(\CF)$, where $\CF$ is a $p$-adic field. It is an extension of the work of Heumos and Rallis on $\GL_4(\CF)$.

Keywords:Klyachko models, Whittaker-symplectic model
Category:22E50

23. CJM 2008 (vol 60 pp. 1306)

Mui\'c, Goran
Theta Lifts of Tempered Representations for Dual Pairs $(\Sp_{2n}, O(V))$
This paper is the continuation of our previous work on the explicit determination of the structure of theta lifts for dual pairs $(\Sp_{2n}, O(V))$ over a non-archimedean field $F$ of characteristic different than $2$, where $n$ is the split rank of $\Sp_{2n}$ and the dimension of the space $V$ (over $F$) is even. We determine the structure of theta lifts of tempered representations in terms of theta lifts of representations in discrete series.

Categories:22E35, 22E50, 11F70

24. CJM 2008 (vol 60 pp. 1067)

Kariyama, Kazutoshi
On Types for Unramified $p$-Adic Unitary Groups
Let $F$ be a non-archimedean local field of residue characteristic neither 2 nor 3 equipped with a galois involution with fixed field $F_0$, and let $G$ be a symplectic group over $F$ or an unramified unitary group over $F_0$. Following the methods of Bushnell--Kutzko for $\GL(N,F)$, we define an analogue of a simple type attached to a certain skew simple stratum, and realize a type in $G$. In particular, we obtain an irreducible supercuspidal representation of $G$ like $\GL(N,F)$.

Keywords:$p$-adic unitary group, type, supercuspidal representation, Hecke algebra
Categories:22E50, 22D99

25. CJM 2008 (vol 60 pp. 790)

Blasco, Laure
Types, paquets et changement de base : l'exemple de $U(2,1)(F_0)$. I. Types simples maximaux et paquets singletons
Soit $F_0$ un corps local non archim\'edien de caract\'eristique nulle et de ca\-rac\-t\'eristique r\'esiduelle impaire. J. Rogawski a montr\'e l'existence du changement de base entre le groupe unitaire en trois variables $U(2,1)(F_{0})$, d\'efini relativement \`a une extension quadratique $F$ de $F_{0}$, et le groupe lin\'eaire $GL(3,F)$. Par ailleurs, nous avons d\'ecrit les repr\'esentations supercuspidales irr\'eductibles de $U(2,1)(F_{0})$ comme induites \`a partir d'un sous-groupe compact ouvert de $U(2,1)(F_{0})$, description analogue \`a celle des repr\'esentations admissibles irr\'eductibles de $GL(3,F)$ obtenue par C. Bushnell et P. Kutzko. A partir de ces descriptions, nous construisons explicitement le changement de base des repr\'esentations tr\`es cuspidales de $U(2,1)(F_{0})$.

Categories:22E50, 11F70
Page
   1 2    

© Canadian Mathematical Society, 2016 : https://cms.math.ca/