Expand all Collapse all | Results 1 - 7 of 7 |
1. CJM 2013 (vol 66 pp. 354)
The Minimal Growth Rate of Cocompact Coxeter Groups in Hyperbolic 3-space Due to work of W. Parry it is known that the growth
rate of a hyperbolic Coxeter group acting cocompactly on ${\mathbb H^3}$
is a Salem number. This being the arithmetic situation, we prove that the simplex group
(3,5,3) has smallest growth rate among all cocompact hyperbolic
Coxeter groups, and that it is as such unique.
Our approach provides a different proof for
the analog situation in ${\mathbb H^2}$
where E. Hironaka identified Lehmer's number as the minimal growth
rate among all cocompact planar hyperbolic Coxeter groups and showed
that it is (uniquely) achieved by the Coxeter triangle group (3,7).
Keywords:hyperbolic Coxeter group, growth rate, Salem number Categories:20F55, 22E40, 51F15 |
2. CJM 2009 (vol 61 pp. 1407)
Traces, Cross-Ratios and 2-Generator Subgroups of $\SU(2,1)$ In this work, we investigate how to decompose a pair $(A,B)$ of
loxodromic isometries of the complex hyperbolic plane $\mathbf H^{2}_{\mathbb C}$ under
the form $A=I_1I_2$ and $B=I_3I_2$, where the $I_k$'s are
involutions. The main result is a decomposability criterion, which
is expressed in terms of traces of elements of the group $\langle
A,B\rangle$.
Categories:14L24, 22E40, 32M15, 51M10 |
3. CJM 2006 (vol 58 pp. 673)
The Generalized Cuspidal Cohomology Problem Let $\Gamma \subset \SO(3,1)$ be a lattice.
The well known \emph{bending deformations}, introduced by
\linebreak Thurston
and Apanasov, can be used
to construct non-trivial curves of representations of $\Gamma$
into $\SO(4,1)$ when $\Gamma \backslash \hype{3}$ contains
an embedded totally geodesic surface. A tangent vector to such a
curve is given by a non-zero group cohomology class
in $\H^1(\Gamma, \mink{4})$. Our main result generalizes this
construction of cohomology to the context of ``branched''
totally geodesic surfaces.
We also consider a natural generalization of the famous
cuspidal cohomology problem for the Bianchi groups
(to coefficients in non-trivial representations), and
perform calculations in a finite range.
These calculations lead directly to an interesting example of a
link complement in $S^3$
which is not infinitesimally rigid in $\SO(4,1)$.
The first order deformations of this link complement are supported
on a piecewise totally geodesic $2$-complex.
Categories:57M50, 22E40 |
4. CJM 2003 (vol 55 pp. 1080)
Quaternions and Some Global Properties of Hyperbolic $5$-Manifolds We provide an explicit thick and thin decomposition for oriented
hyperbolic manifolds $M$ of dimension $5$. The result implies improved
universal lower bounds for the volume $\rmvol_5(M)$ and, for $M$
compact, new estimates relating the injectivity radius and the diameter
of $M$ with $\rmvol_5(M)$. The quantification of the thin part is
based upon the identification of the isometry group of the universal
space by the matrix group $\PS_\Delta {\rm L} (2,\mathbb{H})$ of
quaternionic $2\times 2$-matrices with Dieudonn\'e determinant
$\Delta$ equal to $1$ and isolation properties of $\PS_\Delta {\rm
L} (2,\mathbb{H})$.
Categories:53C22, 53C25, 57N16, 57S30, 51N30, 20G20, 22E40 |
5. CJM 1999 (vol 51 pp. 1307)
Quadratic Integers and Coxeter Groups Matrices whose entries belong to certain rings of algebraic
integers can be associated with discrete groups of transformations
of inversive $n$-space or hyperbolic $(n+1)$-space
$\mbox{H}^{n+1}$. For small $n$, these may be Coxeter groups,
generated by reflections, or certain subgroups whose generators
include direct isometries of $\mbox{H}^{n+1}$. We show how linear
fractional transformations over rings of rational and (real or
imaginary) quadratic integers are related to the symmetry groups of
regular tilings of the hyperbolic plane or 3-space. New light is
shed on the properties of the rational modular group $\PSL_2
(\bbZ)$, the Gaussian modular (Picard) group $\PSL_2 (\bbZ[{\it
i}])$, and the Eisenstein modular group $\PSL_2 (\bbZ[\omega ])$.
Categories:11F06, 20F55, 20G20, 20H10, 22E40 |
6. CJM 1999 (vol 51 pp. 952)
On Limit Multiplicities for Spaces of Automorphic Forms Let $\Gamma$ be a rank-one arithmetic subgroup of a
semisimple Lie group~$G$. For fixed $K$-Type, the spectral
side of the Selberg trace formula defines a distribution
on the space of infinitesimal characters of~$G$, whose
discrete part encodes the dimensions of the spaces of
square-integrable $\Gamma$-automorphic forms. It is shown
that this distribution converges to the Plancherel measure
of $G$ when $\Ga$ shrinks to the trivial group in a certain
restricted way. The analogous assertion for cocompact
lattices $\Gamma$ follows from results of DeGeorge-Wallach
and Delorme.
Keywords:limit multiplicities, automorphic forms, noncompact quotients, Selberg trace formula, functional calculus Categories:11F72, 22E30, 22E40, 43A85, 58G25 |
7. CJM 1999 (vol 51 pp. 266)
Spectral Estimates for Towers of Noncompact Quotients We prove a uniform upper estimate on the number of cuspidal
eigenvalues of the $\Ga$-automorphic Laplacian below a given bound
when $\Ga$ varies in a family of congruence subgroups of a given
reductive linear algebraic group. Each $\Ga$ in the family is assumed
to contain a principal congruence subgroup whose index in $\Ga$ does
not exceed a fixed number. The bound we prove depends linearly on the
covolume of $\Ga$ and is deduced from the analogous result about the
cut-off Laplacian. The proof generalizes the heat-kernel method which
has been applied by Donnelly in the case of a fixed lattice~$\Ga$.
Categories:11F72, 58G25, 22E40 |