CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 22D25 ( $C^$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx] *$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx] * )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2011 (vol 63 pp. 798)

Daws, Matthew
Representing Multipliers of the Fourier Algebra on Non-Commutative $L^p$ Spaces
We show that the multiplier algebra of the Fourier algebra on a locally compact group $G$ can be isometrically represented on a direct sum on non-commutative $L^p$ spaces associated with the right von Neumann algebra of $G$. The resulting image is the idealiser of the image of the Fourier algebra. If these spaces are given their canonical operator space structure, then we get a completely isometric representation of the completely bounded multiplier algebra. We make a careful study of the non-commutative $L^p$ spaces we construct and show that they are completely isometric to those considered recently by Forrest, Lee, and Samei. We improve a result of theirs about module homomorphisms. We suggest a definition of a Figa-Talamanca-Herz algebra built out of these non-commutative $L^p$ spaces, say $A_p(\widehat G)$. It is shown that $A_2(\widehat G)$ is isometric to $L^1(G)$, generalising the abelian situation.

Keywords:multiplier, Fourier algebra, non-commutative $L^p$ space, complex interpolation
Categories:43A22, 43A30, 46L51, 22D25, 42B15, 46L07, 46L52

2. CJM 2005 (vol 57 pp. 17)

Bédos, Erik; Conti, Roberto; Tuset, Lars
On Amenability and Co-Amenability of Algebraic Quantum Groups and Their Corepresentations
We introduce and study several notions of amenability for unitary corepresentations and $*$-representations of algebraic quantum groups, which may be used to characterize amenability and co-amenability for such quantum groups. As a background for this study, we investigate the associated tensor C$^{*}$-categories.

Keywords:quantum group, amenability
Categories:46L05, 46L65, 22D10, 22D25, 43A07, 43A65, 58B32

3. CJM 1997 (vol 49 pp. 1117)

Hu, Zhiguo
The von Neumann algebra $\VN(G)$ of a locally compact group and quotients of its subspaces
Let $\VN(G)$ be the von Neumann algebra of a locally compact group $G$. We denote by $\mu$ the initial ordinal with $\abs{\mu}$ equal to the smallest cardinality of an open basis at the unit of $G$ and $X= \{\alpha; \alpha < \mu \}$. We show that if $G$ is nondiscrete then there exist an isometric $*$-isomorphism $\kappa$ of $l^{\infty}(X)$ into $\VN(G)$ and a positive linear mapping $\pi$ of $\VN(G)$ onto $l^{\infty}(X)$ such that $\pi\circ\kappa = \id_{l^{\infty}(X)}$ and $\kappa$ and $\pi$ have certain additional properties. Let $\UCB (\hat{G})$ be the $C^{*}$-algebra generated by operators in $\VN(G)$ with compact support and $F(\hat{G})$ the space of all $T \in \VN(G)$ such that all topologically invariant means on $\VN(G)$ attain the same value at $T$. The construction of the mapping $\pi$ leads to the conclusion that the quotient space $\UCB (\hat{G})/F(\hat{G})\cap \UCB(\hat{G})$ has $l^{\infty}(X)$ as a continuous linear image if $G$ is nondiscrete. When $G$ is further assumed to be non-metrizable, it is shown that $\UCB(\hat{G})/F (\hat{G})\cap \UCB(\hat{G})$ contains a linear isomorphic copy of $l^{\infty}(X)$. Similar results are also obtained for other quotient spaces.

Categories:22D25, 43A22, 43A30, 22D15, 43A07, 47D35

© Canadian Mathematical Society, 2014 : https://cms.math.ca/