Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 22D10 ( Unitary representations of locally compact groups )

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2008 (vol 60 pp. 1001)

Cornulier, Yves de; Tessera, Romain; Valette, Alain
Isometric Group Actions on Hilbert Spaces: Structure of Orbits
Our main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.

Keywords:affine actions, Hilbert spaces, minimal actions, nilpotent groups
Categories:22D10, 43A35, 20F69

2. CJM 2005 (vol 57 pp. 598)

Kornelson, Keri A.
Local Solvability of Laplacian Difference Operators Arising from the Discrete Heisenberg Group
Differential operators $D_x$, $D_y$, and $D_z$ are formed using the action of the $3$-dimensional discrete Heisenberg group $G$ on a set $S$, and the operators will act on functions on $S$. The Laplacian operator $L=D_x^2 + D_y^2 + D_z^2$ is a difference operator with variable differences which can be associated to a unitary representation of $G$ on the Hilbert space $L^2(S)$. Using techniques from harmonic analysis and representation theory, we show that the Laplacian operator is locally solvable.

Keywords:discrete Heisenberg group,, unitary representation,, local solvability,, difference operator
Categories:43A85, 22D10, 39A70

3. CJM 2005 (vol 57 pp. 17)

Bédos, Erik; Conti, Roberto; Tuset, Lars
On Amenability and Co-Amenability of Algebraic Quantum Groups and Their Corepresentations
We introduce and study several notions of amenability for unitary corepresentations and $*$-representations of algebraic quantum groups, which may be used to characterize amenability and co-amenability for such quantum groups. As a background for this study, we investigate the associated tensor C$^{*}$-categories.

Keywords:quantum group, amenability
Categories:46L05, 46L65, 22D10, 22D25, 43A07, 43A65, 58B32

4. CJM 2004 (vol 56 pp. 883)

Tandra, Haryono; Moran, William
Kirillov Theory for a Class of Discrete Nilpotent Groups
This paper is concerned with the Kirillov map for a class of torsion-free nilpotent groups $G$. $G$ is assumed to be discrete, countable and $\pi$-radicable, with $\pi$ containing the primes less than or equal to the nilpotence class of $G$. In addition, it is assumed that all of the characters of $G$ have idempotent absolute value. Such groups are shown to be plentiful.


© Canadian Mathematical Society, 2014 :