101. CJM 2000 (vol 52 pp. 306)
 Cunningham, Clifton

Characters of DepthZero, Supercuspidal Representations of the Rank2 Symplectic Group
This paper expresses the character of certain depthzero
supercuspidal representations of the rank2 symplectic group as the
Fourier transform of a finite linear combination of regular
elliptic orbital integralsan expression which is ideally suited
for the study of the stability of those characters. Building on
work of F.~Murnaghan, our proof involves Lusztig's Generalised
Springer Correspondence in a fundamental way, and also makes use of
some results on elliptic orbital integrals proved elsewhere by the
author using MoyPrasad filtrations of $p$adic Lie algebras. Two
applications of the main result are considered toward the end of
the paper.
Categories:22E50, 22E35 

102. CJM 1999 (vol 51 pp. 1135)
 Arthur, James

Endoscopic $L$Functions and a Combinatorial Identity
The trace formula contains terms on the spectral side that are
constructed from unramified automorphic $L$functions. We shall
establish an identify that relates these terms with corresponding
terms attached to endoscopic groups of $G$. In the process, we
shall show that the $L$functions of $G$ that come from automorphic
representations of endoscopic groups have meromorphic continuation.
Categories:22E45, 22E46 

103. CJM 1999 (vol 51 pp. 1307)
 Johnson, Norman W.; Weiss, Asia Ivić

Quadratic Integers and Coxeter Groups
Matrices whose entries belong to certain rings of algebraic
integers can be associated with discrete groups of transformations
of inversive $n$space or hyperbolic $(n+1)$space
$\mbox{H}^{n+1}$. For small $n$, these may be Coxeter groups,
generated by reflections, or certain subgroups whose generators
include direct isometries of $\mbox{H}^{n+1}$. We show how linear
fractional transformations over rings of rational and (real or
imaginary) quadratic integers are related to the symmetry groups of
regular tilings of the hyperbolic plane or 3space. New light is
shed on the properties of the rational modular group $\PSL_2
(\bbZ)$, the Gaussian modular (Picard) group $\PSL_2 (\bbZ[{\it
i}])$, and the Eisenstein modular group $\PSL_2 (\bbZ[\omega ])$.
Categories:11F06, 20F55, 20G20, 20H10, 22E40 

104. CJM 1999 (vol 51 pp. 952)
 Deitmar, Anton; Hoffmann, Werner

On Limit Multiplicities for Spaces of Automorphic Forms
Let $\Gamma$ be a rankone arithmetic subgroup of a
semisimple Lie group~$G$. For fixed $K$Type, the spectral
side of the Selberg trace formula defines a distribution
on the space of infinitesimal characters of~$G$, whose
discrete part encodes the dimensions of the spaces of
squareintegrable $\Gamma$automorphic forms. It is shown
that this distribution converges to the Plancherel measure
of $G$ when $\Ga$ shrinks to the trivial group in a certain
restricted way. The analogous assertion for cocompact
lattices $\Gamma$ follows from results of DeGeorgeWallach
and Delorme.
Keywords:limit multiplicities, automorphic forms, noncompact quotients, Selberg trace formula, functional calculus Categories:11F72, 22E30, 22E40, 43A85, 58G25 

105. CJM 1999 (vol 51 pp. 835)
 Kim, Henry H.

LanglandsShahidi Method and Poles of Automorphic $L$Functions: Application to Exterior Square $L$Functions
In this paper we use LanglandsShahidi method and the result of
Langlands which says that non selfconjugate maximal parabolic
subgroups do not contribute to the residual spectrum, to prove the
holomorphy of several \emph{completed} automorphic $L$functions on the
whole complex plane which appear in constant terms of the Eisenstein
series. They include the exterior square $L$functions of $\GL_n$, $n$
odd, the RankinSelberg $L$functions of $\GL_n\times \GL_m$, $n\ne m$,
and $L$functions $L(s,\sigma,r)$, where $\sigma$ is a generic
cuspidal representation of $\SO_{10}$ and $r$ is the halfspin
representation of $\GSpin(10, \mathbb{C})$. The main part is
proving the holomorphy and nonvanishing of the local normalized
intertwining operators by reducing them to natural conjectures in
harmonic analysis, such as standard module conjecture.
Categories:11F, 22E 

106. CJM 1999 (vol 51 pp. 816)
 Hall, Brian C.

A New Form of the SegalBargmann Transform for Lie Groups of Compact Type
I consider a twoparameter family $B_{s,t}$ of unitary transforms
mapping an $L^{2}$space over a Lie group of compact type onto a
holomorphic $L^{2}$space over the complexified group. These were
studied using infinitedimensional analysis in joint work with
B.~Driver, but are treated here by finitedimensional means. These
transforms interpolate between two previously known transforms, and
all should be thought of as generalizations of the classical
SegalBargmann transform. I consider also the limiting cases $s
\rightarrow \infty$ and $s \rightarrow t/2$.
Categories:22E30, 81S30, 58G11 

107. CJM 1999 (vol 51 pp. 636)
108. CJM 1999 (vol 51 pp. 266)
 Deitmar, Anton; Hoffman, Werner

Spectral Estimates for Towers of Noncompact Quotients
We prove a uniform upper estimate on the number of cuspidal
eigenvalues of the $\Ga$automorphic Laplacian below a given bound
when $\Ga$ varies in a family of congruence subgroups of a given
reductive linear algebraic group. Each $\Ga$ in the family is assumed
to contain a principal congruence subgroup whose index in $\Ga$ does
not exceed a fixed number. The bound we prove depends linearly on the
covolume of $\Ga$ and is deduced from the analogous result about the
cutoff Laplacian. The proof generalizes the heatkernel method which
has been applied by Donnelly in the case of a fixed lattice~$\Ga$.
Categories:11F72, 58G25, 22E40 

109. CJM 1999 (vol 51 pp. 164)
 Tan, Victor

Poles of Siegel Eisenstein Series on $U(n,n)$
Let $U(n,n)$ be the rank $n$ quasisplit unitary group over a
number field. We show that the normalized Siegel Eisenstein series
of $U(n,n)$ has at most simple poles at the integers or half
integers in certain strip of the complex plane.
Categories:11F70, 11F27, 22E50 

110. CJM 1999 (vol 51 pp. 130)
 Savin, Gordan; Gan, Wee Teck

The Dual Pair $G_2 \times \PU_3 (D)$ ($p$Adic Case)
We study the correspondence of representations arising by
restricting the minimal representation of the linear group of type
$E_7$ and relative rank $4$. The main tool is computations of the
Jacquet modules of the minimal representation with respect to
maximal parabolic subgroups of $G_2$ and $\PU_3(D)$.
Categories:22E35, 22E50, 11F70 

111. CJM 1998 (vol 50 pp. 1090)
112. CJM 1998 (vol 50 pp. 1105)
 Roberts, Brooks

Tempered representations and the theta correspondence
Let $V$ be an even dimensional nondegenerate symmetric bilinear
space over a nonarchimedean local field $F$ of characteristic zero,
and let $n$ be a nonnegative integer. Suppose that $\sigma \in
\Irr \bigl(\OO (V)\bigr)$ and $\pi \in \Irr \bigl(\Sp (n,F)\bigr)$
correspond under the theta correspondence. Assuming that $\sigma$
is tempered, we investigate the problem of determining the
Langlands quotient data for $\pi$.
Categories:11F27, 22E50 

113. CJM 1998 (vol 50 pp. 972)
 Brüchert, Gerd

Trace class elements and crosssections in KacMoody groups
Let $G$ be an affine KacMoody group, $\pi_0,\dots,\pi_r,\pi_{\delta}$
its fundamental irreducible representations and $\chi_0, \dots,
\chi_r, \chi_{\delta}$ their characters. We determine the set of all
group elements $x$ such that all $\pi_i(x)$ act as trace class
operators, \ie, such that $\chi_i(x)$ exists, then prove that the
$\chi_i$ are class functions. Thus, $\chi:=(\chi_0, \dots, \chi_r,
\chi_{\delta})$ factors to an adjoint quotient $\bar{\chi}$ for $G$.
In a second part, following Steinberg, we define a crosssection $C$
for the potential regular classes in $G$. We prove that the
restriction $\chi_C$ behaves well algebraically. Moreover, we obtain
an action of $\hbox{\Bbbvii C}^{\times}$ on $C$, which leads to a
functional identity for $\chi_C$ which shows that $\chi_C$ is
quasihomogeneous.
Categories:22E65, 17B67 

114. CJM 1998 (vol 50 pp. 356)
 Gross, Leonard

Some norms on universal enveloping algebras
The universal enveloping algebra, $U(\frak g)$, of a Lie algebra $\frak g$
supports some norms and seminorms that have arisen naturally in the
context of heat kernel analysis on Lie groups. These norms and seminorms
are investigated here from an algebraic viewpoint. It is shown
that the norms corresponding to heat kernels on the associated Lie
groups decompose as product norms under the natural isomorphism
$U(\frak g_1 \oplus \frak g_2) \cong U(\frak g_1) \otimes U(\frak
g_2)$. The seminorms corresponding to Green's functions are
examined at a purely Lie algebra level for $\rmsl(2,\Bbb C)$. It
is also shown that the algebraic dual space $U'$ is spanned by its
finite rank elements if and only if $\frak g$ is nilpotent.
Categories:17B35, 16S30, 22E30 

115. CJM 1998 (vol 50 pp. 74)
 Flicker, Yuval Z.

Elementary proof of the fundamental lemma for a unitary group
The fundamental lemma in the theory of automorphic forms is proven
for the (quasisplit) unitary group $U(3)$ in three variables
associated with a quadratic extension of $p$adic fields, and its
endoscopic group $U(2)$, by means of a new, elementary technique.
This lemma is a prerequisite for an application of the trace
formula to classify the automorphic and admissible representations
of $U(3)$ in terms of those of $U(2)$ and base change to $\GL(3)$.
It compares the (unstable) orbital integral of the characteristic
function of the standard maximal compact subgroup $K$ of $U(3)$ at
a regular element (whose centralizer $T$ is a torus), with an
analogous (stable) orbital integral on the endoscopic group $U(2)$.
The technique is based on computing the sum over the double coset
space $T\bs G/K$ which describes the integral, by means of an
intermediate double coset space $H\bs G/K$ for a subgroup $H$ of
$G=U(3)$ containing $T$. Such an argument originates from
Weissauer's work on the symplectic group. The lemma is proven for
both ramified and unramified regular elements, for which endoscopy
occurs (the stable conjugacy class is not a single orbit).
Categories:22E35, 11F70, 11F85, 11S37 

116. CJM 1997 (vol 49 pp. 1117)
 Hu, Zhiguo

The von Neumann algebra $\VN(G)$ of a locally compact group and quotients of its subspaces
Let $\VN(G)$ be the von Neumann algebra of a locally
compact group $G$. We denote by $\mu$ the initial
ordinal with $\abs{\mu}$ equal to the smallest cardinality
of an open basis at the unit of $G$ and $X= \{\alpha;
\alpha < \mu \}$. We show that if $G$ is nondiscrete
then there exist an isometric $*$isomorphism $\kappa$
of $l^{\infty}(X)$ into $\VN(G)$ and a positive linear
mapping $\pi$ of $\VN(G)$ onto $l^{\infty}(X)$ such that
$\pi\circ\kappa = \id_{l^{\infty}(X)}$ and $\kappa$ and
$\pi$ have certain additional properties. Let $\UCB
(\hat{G})$ be the $C^{*}$algebra generated by
operators in $\VN(G)$ with compact support and
$F(\hat{G})$ the space of all $T \in \VN(G)$ such that
all topologically invariant means on $\VN(G)$ attain the
same value at $T$. The construction of the mapping $\pi$
leads to the conclusion that the quotient space $\UCB
(\hat{G})/F(\hat{G})\cap \UCB(\hat{G})$ has
$l^{\infty}(X)$ as a continuous linear image if $G$ is
nondiscrete. When $G$ is further assumed to be
nonmetrizable, it is shown that $\UCB(\hat{G})/F
(\hat{G})\cap \UCB(\hat{G})$ contains a linear
isomorphic copy of $l^{\infty}(X)$. Similar results are
also obtained for other quotient spaces.
Categories:22D25, 43A22, 43A30, 22D15, 43A07, 47D35 

117. CJM 1997 (vol 49 pp. 1224)
 Ørsted, Bent; Zhang, Genkai

Tensor products of analytic continuations of holomorphic discrete series
We give the irreducible decomposition
of the tensor product of an analytic continuation of
the holomorphic discrete
series of $\SU(2, 2)$ with its conjugate.
Keywords:Holomorphic discrete series, tensor product, spherical function, ClebschGordan coefficient, Plancherel theorem Categories:22E45, 43A85, 32M15, 33A65 

118. CJM 1997 (vol 49 pp. 916)
 Brylinski, Ranee

Quantization of the $4$dimensional nilpotent orbit of SL(3,$\mathbb{R}$)
We give a new geometric model for the quantization
of the 4dimensional conical (nilpotent) adjoint orbit
$O_\mathbb{R}$ of SL$(3,\mathbb{R})$. The space of quantization is the space of
holomorphic functions on $\mathbb{C}^2 \{ 0 \}$ which are square integrable
with respect to a signed measure defined by a Meijer $G$function.
We construct the quantization out a nonflat Kaehler structure on
$\mathbb{C}^2  \{ 0 \}$ (the universal cover of $O_\mathbb{R}$ ) with Kaehler potential
$\rho=z^4$.
Categories:81S10, 32C17, 22E70 

119. CJM 1997 (vol 49 pp. 820)
 Robart, Thierry

Sur l'intÃ©grabilitÃ© des sousalgÃ¨bres de Lie en dimension infinie
Une des questions fondamentales de la th\'eorie des groupes de
Lie de dimension infinie concerne l'int\'egrabilit\'e des
sousalg\`ebres de Lie topologiques $\cal H$ de l'alg\`ebre
de Lie $\cal G$ d'un groupe de Lie $G$ de dimension infinie
au sens de Milnor. Par contraste avec ce qui se passe en
th\'eorie classique il peut exister des sousalg\`ebres de Lie
ferm\'ees $\cal H$ de $\cal G$ nonint\'egrables en un
sousgroupe de Lie. C'est le cas des alg\`ebres de Lie de champs
de vecteurs $C^{\infty}$ d'une vari\'et\'e compacte qui ne
d\'efinissent pas un feuilletage de Stefan. Heureusement cette
``imperfection" de la th\'eorie n'est pas partag\'ee par tous les
groupes de Lie int\'eressants. C'est ce que montre cet article
en exhibant une tr\`es large classe de groupes de Lie de
dimension infinie exempte de cette imperfection. Cela permet de
traiter compl\`etement le second probl\`eme fondamental de
Sophus Lie pour les groupes de jauge de la
physiquemath\'ematique et les groupes formels de
diff\'eomorphismes lisses de $\R^n$ qui fixent l'origine.
Categories:22E65, 58h05, 17B65 

120. CJM 1997 (vol 49 pp. 736)
121. CJM 1997 (vol 49 pp. 417)
 Boe, Brian D.; Fu, Joseph H. G.

Characteristic cycles in Hermitian symmetric spaces
We give explicit combinatorial expresssions for the characteristic
cycles associated to certain canonical sheaves on Schubert varieties
$X$ in the classical Hermitian symmetric spaces: namely the
intersection homology sheaves $IH_X$ and the constant sheaves $\Bbb
C_X$. The three main cases of interest are the Hermitian symmetric
spaces for groups of type $A_n$ (the standard Grassmannian), $C_n$
(the Lagrangian Grassmannian) and $D_n$. In particular we find that
$CC(IH_X)$ is irreducible for all Schubert varieties $X$ if and only
if the associated Dynkin diagram is simply laced. The result for
Schubert varieties in the standard Grassmannian had been established
earlier by Bressler, Finkelberg and Lunts, while the computations in
the $C_n$ and $D_n$ cases are new.
Our approach is to compute $CC(\Bbb C_X)$ by a direct geometric
method, then to use the combinatorics of the KazhdanLusztig
polynomials (simplified for Hermitian symmetric spaces) to compute
$CC(IH_X)$. The geometric method is based on the fundamental formula
$$CC(\Bbb C_X) = \lim_{r\downarrow 0} CC(\Bbb C_{X_r}),$$ where the
$X_r \downarrow X$ constitute a family of tubes around the variety
$X$. This formula leads at once to an expression for the coefficients
of $CC(\Bbb C_X)$ as the degrees of certain singular maps between
spheres.
Categories:14M15, 22E47, 53C65 

122. CJM 1997 (vol 49 pp. 133)
 Reeder, Mark

Exterior powers of the adjoint representation
Exterior powers of the adjoint representation of a complex semisimple Lie
algebra are decomposed into irreducible representations, to varying
degrees of satisfaction.
Keywords:Lie algebras, adjoint representation, exterior algebra Categories:20G05, 20C30, 22E10, 22E60 
