CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 22 ( Topological groups, Lie groups )

  Expand all        Collapse all Results 76 - 100 of 122

76. CJM 2004 (vol 56 pp. 293)

Khomenko, Oleksandr; Mazorchuk, Volodymyr
Structure of modules induced from simple modules with minimal annihilator
We study the structure of generalized Verma modules over a semi-simple complex finite-dimensional Lie algebra, which are induced from simple modules over a parabolic subalgebra. We consider the case when the annihilator of the starting simple module is a minimal primitive ideal if we restrict this module to the Levi factor of the parabolic subalgebra. We show that these modules correspond to proper standard modules in some parabolic generalization of the Bernstein-Gelfand-Gelfand category $\Oo$ and prove that the blocks of this parabolic category are equivalent to certain blocks of the category of Harish-Chandra bimodules. From this we derive, in particular, an irreducibility criterion for generalized Verma modules. We also compute the composition multiplicities of those simple subquotients, which correspond to the induction from simple modules whose annihilators are minimal primitive ideals.

Keywords:parabolic induction, generalized Verma module, simple module, Ha\-rish-\-Chand\-ra bimodule, equivalent categories
Categories:17B10, 22E47

77. CJM 2004 (vol 56 pp. 168)

Pogge, James Todd
On a Certain Residual Spectrum of $\Sp_8$
Let $G=\Sp_{2n}$ be the symplectic group defined over a number field $F$. Let $\mathbb{A}$ be the ring of adeles. A fundamental problem in the theory of automorphic forms is to decompose the right regular representation of $G(\mathbb{A})$ acting on the Hilbert space $L^2\bigl(G(F)\setminus G(\mathbb{A})\bigr)$. Main contributions have been made by Langlands. He described, using his theory of Eisenstein series, an orthogonal decomposition of this space of the form: $L_{\dis}^2 \bigl( G(F)\setminus G(\mathbb{A}) \bigr)=\bigoplus_{(M,\pi)} L_{\dis}^2(G(F) \setminus G(\mathbb{A}) \bigr)_{(M,\pi)}$, where $(M,\pi)$ is a Levi subgroup with a cuspidal automorphic representation $\pi$ taken modulo conjugacy (Here we normalize $\pi$ so that the action of the maximal split torus in the center of $G$ at the archimedean places is trivial.) and $L_{\dis}^2\bigl(G(F)\setminus G(\mathbb{A})\bigr)_{(M,\pi)}$ is a space of residues of Eisenstein series associated to $(M,\pi)$. In this paper, we will completely determine the space $L_{\dis}^2\bigl(G(F)\setminus G(\mathbb{A})\bigr)_{(M,\pi)}$, when $M\simeq\GL_2\times\GL_2$. This is the first result on the residual spectrum for non-maximal, non-Borel parabolic subgroups, other than $\GL_n$.

Categories:11F70, 22E55

78. CJM 2003 (vol 55 pp. 1155)

Đoković, Dragomir Ž.; Litvinov, Michael
The Closure Ordering of Nilpotent Orbits of the Complex Symmetric Pair $(\SO_{p+q},\SO_p\times\SO_q)$
The main problem that is solved in this paper has the following simple formulation (which is not used in its solution). The group $K = \mathrm{O}_p ({\bf C}) \times \mathrm{O}_q ({\bf C})$ acts on the space $M_{p,q}$ of $p\times q$ complex matrices by $(a,b) \cdot x = axb^{-1}$, and so does its identity component $K^0 = \SO_p ({\bf C}) \times \SO_q ({\bf C})$. A $K$-orbit (or $K^0$-orbit) in $M_{p,q}$ is said to be nilpotent if its closure contains the zero matrix. The closure, $\overline{\mathcal{O}}$, of a nilpotent $K$-orbit (resp.\ $K^0$-orbit) ${\mathcal{O}}$ in $M_{p,q}$ is a union of ${\mathcal{O}}$ and some nilpotent $K$-orbits (resp.\ $K^0$-orbits) of smaller dimensions. The description of the closure of nilpotent $K$-orbits has been known for some time, but not so for the nilpotent $K^0$-orbits. A conjecture describing the closure of nilpotent $K^0$-orbits was proposed in \cite{DLS} and verified when $\min(p,q) \le 7$. In this paper we prove the conjecture. The proof is based on a study of two prehomogeneous vector spaces attached to $\mathcal{O}$ and determination of the basic relative invariants of these spaces. The above problem is equivalent to the problem of describing the closure of nilpotent orbits in the real Lie algebra $\mathfrak{so} (p,q)$ under the adjoint action of the identity component of the real orthogonal group $\mathrm{O}(p,q)$.

Keywords:orthogonal $ab$-diagrams, prehomogeneous vector spaces, relative invariants
Categories:17B20, 17B45, 22E47

79. CJM 2003 (vol 55 pp. 1121)

Bettaïeb, Karem
Classification des représentations tempérées d'un groupe $p$-adique
Soit $G$ le groupe des points d\'efinis sur un corps $p$-adique d'un groupe r\'eductif connexe. A l'aide des caract\`eres virtuels supertemp\'er\'es de $G$, on prouve (conjectures de Clozel) que toute repr\'esentation irr\'eductible temp\'er\'ee de $G$ est irr\'eductiblement induite d'une essentielle d'un sous-groupe de L\'evi de~$G$.

Category:22E

80. CJM 2003 (vol 55 pp. 1080)

Kellerhals, Ruth
Quaternions and Some Global Properties of Hyperbolic $5$-Manifolds
We provide an explicit thick and thin decomposition for oriented hyperbolic manifolds $M$ of dimension $5$. The result implies improved universal lower bounds for the volume $\rmvol_5(M)$ and, for $M$ compact, new estimates relating the injectivity radius and the diameter of $M$ with $\rmvol_5(M)$. The quantification of the thin part is based upon the identification of the isometry group of the universal space by the matrix group $\PS_\Delta {\rm L} (2,\mathbb{H})$ of quaternionic $2\times 2$-matrices with Dieudonn\'e determinant $\Delta$ equal to $1$ and isolation properties of $\PS_\Delta {\rm L} (2,\mathbb{H})$.

Categories:53C22, 53C25, 57N16, 57S30, 51N30, 20G20, 22E40

81. CJM 2003 (vol 55 pp. 969)

Glöckner, Helge
Lie Groups of Measurable Mappings
We describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space $(X,\Sigma,\mu)$ and (possibly infinite-dimensional) Lie group $G$, we construct a Lie group $L^\infty (X,G)$, which is a Fr\'echet-Lie group if $G$ is so. We also show that the weak direct product $\prod^*_{i\in I} G_i$ of an arbitrary family $(G_i)_{i\in I}$ of Lie groups can be made a Lie group, modelled on the locally convex direct sum $\bigoplus_{i\in I} L(G_i)$.

Categories:22E65, 46E40, 46E30, 22E67, 46T20, 46T25

82. CJM 2003 (vol 55 pp. 353)

Silberger, Allan J.; Zink, Ernst-Wilhelm
Weak Explicit Matching for Level Zero Discrete Series of Unit Groups of $\mathfrak{p}$-Adic Simple Algebras
Let $F$ be a $p$-adic local field and let $A_i^\times$ be the unit group of a central simple $F$-algebra $A_i$ of reduced degree $n>1$ ($i=1,2$). Let $\mathcal{R}^2 (A_i^\times)$ denote the set of irreducible discrete series representations of $A_i^\times$. The ``Abstract Matching Theorem'' asserts the existence of a bijection, the ``Jacquet-Langlands'' map, $\mathcal{J} \mathcal{L}_{A_2,A_1} \colon \mathcal{R}^2 (A_1^\times) \to \mathcal{R}^2 (A_2^\times)$ which, up to known sign, preserves character values for regular elliptic elements. This paper addresses the question of explicitly describing the map $\mathcal{J} \mathcal{L}$, but only for ``level zero'' representations. We prove that the restriction $\mathcal{J} \mathcal{L}_{A_2,A_1} \colon \mathcal{R}_0^2 (A_1^\times) \to \mathcal{R}_0^2 (A_2^\times)$ is a bijection of level zero discrete series (Proposition~3.2) and we give a parameterization of the set of unramified twist classes of level zero discrete series which does not depend upon the algebra $A_i$ and is invariant under $\mathcal{J} \mathcal{L}_{A_2,A_1}$ (Theorem~4.1).

Categories:22E50, 11R39

83. CJM 2002 (vol 54 pp. 1100)

Wood, Peter J.
The Operator Biprojectivity of the Fourier Algebra
In this paper, we investigate projectivity in the category of operator spaces. In particular, we show that the Fourier algebra of a locally compact group $G$ is operator biprojective if and only if $G$ is discrete.

Keywords:locally compact group, Fourier algebra, operator space, projective
Categories:13D03, 18G25, 43A95, 46L07, 22D99

84. CJM 2002 (vol 54 pp. 795)

Möller, Rögnvaldur G.
Structure Theory of Totally Disconnected Locally Compact Groups via Graphs and Permutations
Willis's structure theory of totally disconnected locally compact groups is investigated in the context of permutation actions. This leads to new interpretations of the basic concepts in the theory and also to new proofs of the fundamental theorems and to several new results. The treatment of Willis's theory is self-contained and full proofs are given of all the fundamental results.

Keywords:totally disconnected locally compact groups, scale function, permutation groups, groups acting on graphs
Categories:22D05, 20B07, 20B27, 05C25

85. CJM 2002 (vol 54 pp. 828)

Moriyama, Tomonori
Spherical Functions for the Semisimple Symmetric Pair $\bigl( \Sp(2,\mathbb{R}), \SL(2,\mathbb{C}) \bigr)$
Let $\pi$ be an irreducible generalized principal series representation of $G = \Sp(2,\mathbb{R})$ induced from its Jacobi parabolic subgroup. We show that the space of algebraic intertwining operators from $\pi$ to the representation induced from an irreducible admissible representation of $\SL(2,\mathbb{C})$ in $G$ is at most one dimensional. Spherical functions in the title are the images of $K$-finite vectors by this intertwining operator. We obtain an integral expression of Mellin-Barnes type for the radial part of our spherical function.

Categories:22E45, 11F70

86. CJM 2002 (vol 54 pp. 769)

Miyazaki, Takuya
Nilpotent Orbits and Whittaker Functions for Derived Functor Modules of $\Sp(2,\mathbb{R})$
We study the moderate growth generalized Whittaker functions, associated to a unitary character $\psi$ of a unipotent subgroup, for the non-tempered cohomological representation of $G = \Sp (2,\mathbb{R})$. Through an explicit calculation of a holonomic system which characterizes these functions we observe that their existence is determined by the including relation between the real nilpotent coadjoint $G$-orbit of $\psi$ in $\mathfrak{g}_{\mathbb{R}}^\ast$ and the asymptotic support of the cohomological representation.

Categories:22E46, 22E30

87. CJM 2002 (vol 54 pp. 263)

Chaudouard, Pierre-Henri
Intégrales orbitales pondérées sur les algèbres de Lie : le cas $p$-adique
Soit $G$ un groupe réductif connexe défini sur un corps $p$-adique $F$ et $\ggo$ son algèbre de Lie. Les intégrales orbitales pondérées sur $\ggo(F)$ sont des distributions $J_M(X,f)$---$f$ est une fonction test---indexées par les sous-groupes de Lévi $M$ de $G$ et les éléments semi-simples réguliers $X \in \mgo(F)\cap \ggo_{\reg}$. Leurs analogues sur $G$ sont les principales composantes du côté géométrique des formules des traces locale et globale d'Arthur. Si $M=G$, on retrouve les intégrales orbitales invariantes qui, vues comme fonction de $X$, sont bornées sur $\mgo(F)\cap \ggo_{\reg}$~: c'est un résultat bien connu de Harish-Chandra. Si $M \subsetneq G$, les intégrales orbitales pondérées explosent au voisinage des éléments singuliers. Nous construisons dans cet article de nouvelles intégrales orbitales pondérées $J_M^b(X,f)$, égales à $J_M(X,f)$ à un terme correctif près, qui tout en conservant les principales propriétés des précédentes (comportement par conjugaison, développement en germes, {\it etc.}) restent bornées quand $X$ parcourt $\mgo(F)\cap\ggo_{\reg}$. Nous montrons également que les intégrales orbitales pondérées globales, associées à des éléments semi-simples réguliers, se décomposent en produits de ces nouvelles intégrales locales.

Categories:22E35, 11F70

88. CJM 2002 (vol 54 pp. 92)

Mezo, Paul
Comparisons of General Linear Groups and their Metaplectic Coverings I
We prepare for a comparison of global trace formulas of general linear groups and their metaplectic coverings. In particular, we generalize the local metaplectic correspondence of Flicker and Kazhdan and describe the terms expected to appear in the invariant trace formulas of the above covering groups. The conjectural trace formulas are then placed into a form suitable for comparison.

Categories:11F70, 11F72, 22E50

89. CJM 2001 (vol 53 pp. 1141)

Bushnell, Colin J.; Henniart, Guy
Sur le comportement, par torsion, des facteurs epsilon de paires
Soient $F$ un corps commutatif localement compact non archim\'edien et $\psi$ un caract\`ere additif non trivial de $F$. Soient $n$ et $n'$ deux entiers distincts, sup\'erieurs \`a $1$. Soient $\pi$ et $\pi'$ des repr\'esentations irr\'eductibles supercuspidales de $\GL_n(F)$, $\GL_{n'}(F)$ respectivement. Nous prouvons qu'il existe un \'el\'ement $c= c(\pi,\pi',\psi)$ de $F^\times$ tel que pour tout quasicaract\`ere mod\'er\'e $\chi$ de $F^\times$ on ait $\varepsilon(\chi\pi\times \pi',s,\psi) = \chi(c)^{-1}\varepsilon(\pi\times\pi',s,\psi)$. Nous examinons aussi certains cas o\`u $n=n'$, $\pi'=\pi^\vee$. Les r\'esultats obtenus forment une \'etape vers une d\'emonstration de la conjecture de Langlands pour $F$, qui ne fasse pas appel \`a la g\'eom\'etrie des vari\'et\'es modulaires, de Shimura ou de Drinfeld. Let $F$ be a non-Archimedean local field, and $\psi$ a non-trivial additive character of $F$. Let $n$ and $n'$ be distinct positive integers. Let $\pi$, $\pi'$ be irreducible supercuspidal representations of $\GL_n(F)$, $\GL_{n'}(F)$ respectively. We prove that there is $c= c(\pi,\pi',\psi)\in F^\times$ such that for every tame quasicharacter $\chi$ of $F^\times$ we have $\varepsilon(\chi\pi\times \pi',s,\psi) = \chi(c)^{-1}\varepsilon(\pi\times\pi',s,\psi)$. We also treat some cases where $n=n'$ and $\pi'=\pi^\vee$. These results are steps towards a proof of the Langlands conjecture for $F$, which would not use the geometry of modular---Shimura or Drinfeld---varieties.

Keywords:corps local, correspondance de Langlands locale, facteurs epsilon de paires
Category:22E50

90. CJM 2001 (vol 53 pp. 675)

Ban, Dubravka
Jacquet Modules of Parabolically Induced Representations and Weyl Groups
The representation parabolically induced from an irreducible supercuspidal representation is considered. Irreducible components of Jacquet modules with respect to induction in stages are given. The results are used for consideration of generalized Steinberg representations.

Category:22E50

91. CJM 2001 (vol 53 pp. 278)

Helminck, G. F.; van de Leur, J. W.
Darboux Transformations for the KP Hierarchy in the Segal-Wilson Setting
In this paper it is shown that inclusions inside the Segal-Wilson Grassmannian give rise to Darboux transformations between the solutions of the $\KP$ hierarchy corresponding to these planes. We present a closed form of the operators that procure the transformation and express them in the related geometric data. Further the associated transformation on the level of $\tau$-functions is given.

Keywords:KP hierarchy, Darboux transformation, Grassmann manifold
Categories:22E65, 22E70, 35Q53, 35Q58, 58B25

92. CJM 2001 (vol 53 pp. 244)

Goldberg, David; Shahidi, Freydoon
On the Tempered Spectrum of Quasi-Split Classical Groups II
We determine the poles of the standard intertwining operators for a maximal parabolic subgroup of the quasi-split unitary group defined by a quadratic extension $E/F$ of $p$-adic fields of characteristic zero. We study the case where the Levi component $M \simeq \GL_n (E) \times U_m (F)$, with $n \equiv m$ $(\mod 2)$. This, along with earlier work, determines the poles of the local Rankin-Selberg product $L$-function $L(s, \tau' \times \tau)$, with $\tau'$ an irreducible unitary supercuspidal representation of $\GL_n (E)$ and $\tau$ a generic irreducible unitary supercuspidal representation of $U_m (F)$. The results are interpreted using the theory of twisted endoscopy.

Categories:22E50, 11S70

93. CJM 2001 (vol 53 pp. 195)

Mokler, Claus
On the Steinberg Map and Steinberg Cross-Section for a Symmetrizable Indefinite Kac-Moody Group
Let $G$ be a symmetrizable indefinite Kac-Moody group over $\C$. Let $\Tr_{\La_1},\dots,\Tr_{\La_{2n-l}}$ be the characters of the fundamental irreducible representations of $G$, defined as convergent series on a certain part $G^{\tralg} \subseteq G$. Following Steinberg in the classical case and Br\"uchert in the affine case, we define the Steinberg map $\chi := (\Tr_{\La_1},\dots, \Tr_{\La_{2n-l}})$ as well as the Steinberg cross section $C$, together with a natural parametrisation $\omega \colon \C^{n} \times (\C^\times)^{\,n-l} \to C$. We investigate the local behaviour of $\chi$ on $C$ near $\omega \bigl( (0,\dots,0) \times (1,\dots,1) \bigr)$, and we show that there exists a neighborhood of $(0,\dots,0) \times (1,\dots,1)$, on which $\chi \circ \omega$ is a regular analytical map, satisfying a certain functional identity. This identity has its origin in an action of the center of $G$ on~$C$.

Categories:22E65, 17B65

94. CJM 2000 (vol 52 pp. 1192)

Herb, Rebecca A.
Orbital Integrals on $p$-Adic Lie Algebras
Let $G$ be a connected reductive $p$-adic group and let $\frakg$ be its Lie algebra. Let $\calO$ be any $G$-orbit in $\frakg$. Then the orbital integral $\mu_{\calO}$ corresponding to $\calO$ is an invariant distribution on $\frakg $, and Harish-Chandra proved that its Fourier transform $\hat \mu_{\calO}$ is a locally constant function on the set $\frakg'$ of regular semisimple elements of $\frakg$. If $\frakh$ is a Cartan subalgebra of $\frakg$, and $\omega$ is a compact subset of $\frakh\cap\frakg'$, we give a formula for $\hat \mu_{\calO}(tH)$ for $H\in\omega$ and $t\in F^{\times}$ sufficiently large. In the case that $\calO$ is a regular semisimple orbit, the formula is already known by work of Waldspurger. In the case that $\calO$ is a nilpotent orbit, the behavior of $\hat\mu_{\calO}$ at infinity is already known because of its homogeneity properties. The general case combines aspects of these two extreme cases. The formula for $\hat\mu _{\calO}$ at infinity can be used to formulate a ``theory of the constant term'' for the space of distributions spanned by the Fourier transforms of orbital integrals. It can also be used to show that the Fourier transforms of orbital integrals are ``linearly independent at infinity.''

Categories:22E30, 22E45

95. CJM 2000 (vol 52 pp. 1101)

Zhang, Yuanli
Discrete Series of Classical Groups
Let $G_n$ be the split classical groups $\Sp(2n)$, $\SO(2n+1)$ and $\SO(2n)$ defined over a $p$-adic field F or the quasi-split classical groups $U(n,n)$ and $U(n+1,n)$ with respect to a quadratic extension $E/F$. We prove the self-duality of unitary supercuspidal data of standard Levi subgroups of $G_n(F)$ which give discrete series representations of $G_n(F)$.

Category:22E35

96. CJM 2000 (vol 52 pp. 804)

Kottwitz, Robert E.; Rogawski, Jonathan D.
The Distributions in the Invariant Trace Formula Are Supported on Characters
J.~Arthur put the trace formula in invariant form for all connected reductive groups and certain disconnected ones. However his work was written so as to apply to the general disconnected case, modulo two missing ingredients. This paper supplies one of those missing ingredients, namely an argument in Galois cohomology of a kind first used by D.~Kazhdan in the connected case.

Categories:22E50, 11S37, 10D40

97. CJM 2000 (vol 52 pp. 449)

Adler, Jeffrey D.; Roche, Alan
An Intertwining Result for $p$-adic Groups
For a reductive $p$-adic group $G$, we compute the supports of the Hecke algebras for the $K$-types for $G$ lying in a certain frequently-occurring class. When $G$ is classical, we compute the intertwining between any two such $K$-types.

Categories:22E50, 20G05

98. CJM 2000 (vol 52 pp. 539)

Jantzen, Chris
On Square-Integrable Representations of Classical $p$-adic Groups
In this paper, we use Jacquet module methods to study the problem of classifying discrete series for the classical $p$-adic groups $\Sp(2n,F)$ and $\SO(2n+1,F)$.

Category:22E50

99. CJM 2000 (vol 52 pp. 412)

Varopoulos, N. Th.
Geometric and Potential Theoretic Results on Lie Groups
The main new results in this paper are contained in the geometric Theorems 1 and~2 of Section~0.1 below and they are related to previous results of M.~Gromov and of myself (\cf\ \cite{1},~\cite{2}). These results are used to prove some general potential theoretic estimates on Lie groups (\cf\ Section~0.3) that are related to my previous work in the area (\cf\ \cite{3},~\cite{4}) and to some deep recent work of G.~Alexopoulos (\cf\ \cite{5},~\cite{21}).

Categories:22E30, 43A80, 60J60, 60J65

100. CJM 2000 (vol 52 pp. 438)

Wallach, N. R.; Willenbring, J.
On Some $q$-Analogs of a Theorem of Kostant-Rallis
In the first part of this paper generalizations of Hesselink's $q$-analog of Kostant's multiplicity formula for the action of a semisimple Lie group on the polynomials on its Lie algebra are given in the context of the Kostant-Rallis theorem. They correspond to the cases of real semisimple Lie groups with one conjugacy class of Cartan subgroup. In the second part of the paper a $q$-analog of the Kostant-Rallis theorem is given for the real group $\SL(4,\mathbb{R})$ (that is $\SO(4)$ acting on symmetric $4 \times 4$ matrices). This example plays two roles. First it contrasts with the examples of the first part. Second it has implications to the study of entanglement of mixed 2 qubit states in quantum computation.

Categories:22E47, 20G05
Page
   1 ... 2 3 4 5    

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/