Expand all Collapse all | Results 1 - 25 of 27 |
1. CJM 2014 (vol 66 pp. 1201)
Lifting Representations of Finite Reductive Groups I: Semisimple Conjugacy Classes Suppose that $\tilde{G}$ is a connected reductive group
defined over a field $k$, and
$\Gamma$ is a finite group acting via $k$-automorphisms
of $\tilde{G}$ satisfying a certain quasi-semisimplicity condition.
Then the identity component of the group of $\Gamma$-fixed points
in $\tilde{G}$ is reductive.
We axiomatize the main features of the relationship between this
fixed-point group and the pair $(\tilde{G},\Gamma)$,
and consider any group $G$ satisfying the axioms.
If both $\tilde{G}$ and $G$ are $k$-quasisplit, then we
can consider their duals $\tilde{G}^*$ and $G^*$.
We show the existence of and give an explicit formula for a natural
map from the set of semisimple stable conjugacy classes in $G^*(k)$
to the analogous set for $\tilde{G}^*(k)$.
If $k$ is finite, then our groups are automatically quasisplit,
and our result specializes to give a map
of semisimple conjugacy classes.
Since such classes parametrize packets of irreducible representations
of $G(k)$ and $\tilde{G}(k)$, one obtains a mapping of such packets.
Keywords:reductive group, lifting, conjugacy class, representation, Lusztig series Categories:20G15, 20G40, 20C33, 22E35 |
2. CJM 2014 (vol 67 pp. 184)
Geometric Spectra and Commensurability The work of Reid, Chinburg-Hamilton-Long-Reid,
Prasad-Rapinchuk, and the author with Reid have demonstrated that
geodesics or totally geodesic submanifolds can sometimes be used to
determine the commensurability class of an arithmetic manifold. The
main results of this article show that generalizations of these
results to other arithmetic manifolds will require a wide range of
data. Specifically, we prove that certain incommensurable arithmetic
manifolds arising from the semisimple Lie groups of the form
$(\operatorname{SL}(d,\mathbf{R}))^r \times
(\operatorname{SL}(d,\mathbf{C}))^s$ have the same commensurability
classes of totally geodesic submanifolds coming from a fixed
field. This construction is algebraic and shows the failure of
determining, in general, a central simple algebra from subalgebras
over a fixed field. This, in turn, can be viewed in terms of forms of
$\operatorname{SL}_d$ and the failure of determining the form via certain classes of
algebraic subgroups.
Keywords:arithmetic groups, Brauer groups, arithmetic equivalence, locally symmetric manifolds Category:20G25 |
3. CJM Online first
Motion in a Symmetric Potential on the Hyperbolic Plane We study the motion of a particle in the hyperbolic plane (embedded in Minkowski space), under the action of a potential that depends only on one variable. This problem is the analogous to the spherical pendulum in a unidirectional force field. However, for the discussion of the hyperbolic plane one has to distinguish three inequivalent cases, depending on the direction of the force field. Symmetry reduction, with respect to groups that are not necessarily compact or even reductive, is carried out by way of Poisson varieties and Hilbert maps. For each case the dynamics is discussed, with special attention to linear potentials.
Keywords:Hamiltonian systems with symmetry, symmetries, non-compact symmetry groups, singular reduction Categories:37J15, 70H33, 70F99, 37C80, 34C14, , 20G20 |
4. CJM 2011 (vol 64 pp. 409)
Lifting Quasianalytic Mappings over Invariants Let $\rho \colon G \to \operatorname{GL}(V)$ be a rational finite dimensional complex representation of a reductive linear
algebraic group $G$, and let $\sigma_1,\dots,\sigma_n$ be a system of generators of the algebra of
invariant polynomials $\mathbb C[V]^G$.
We study the problem of lifting mappings $f\colon \mathbb R^q \supseteq U \to \sigma(V) \subseteq \mathbb C^n$
over the mapping of invariants
$\sigma=(\sigma_1,\dots,\sigma_n) \colon V \to \sigma(V)$. Note that $\sigma(V)$ can be identified with the categorical quotient $V /\!\!/ G$
and its points correspond bijectively to the closed orbits in $V$. We prove that if $f$ belongs to a quasianalytic subclass
$\mathcal C \subseteq C^\infty$ satisfying some mild closedness properties that guarantee resolution of singularities in
$\mathcal C$,
e.g., the real analytic class, then $f$ admits a lift of the
same class $\mathcal C$ after desingularization by local blow-ups and local power substitutions.
As a consequence we show that $f$ itself allows for a lift
that belongs to $\operatorname{SBV}_{\operatorname{loc}}$, i.e., special functions of bounded variation.
If $\rho$ is a real representation of a compact Lie group, we obtain stronger versions.
Keywords:lifting over invariants, reductive group representation, quasianalytic mappings, desingularization, bounded variation Categories:14L24, 14L30, 20G20, 22E45 |
5. CJM 2011 (vol 63 pp. 1307)
A Bott-Borel-Weil Theorem for Diagonal Ind-groups A diagonal ind-group is a direct limit of classical affine algebraic
groups of growing rank under a class of
inclusions that contains the inclusion
$$
SL(n)\to SL(2n), \quad
M\mapsto \begin{pmatrix}M & 0 \\ 0 & M \end{pmatrix}
$$
as a typical special case. If $G$ is a diagonal ind-group and
$B\subset G$ is a Borel ind-subgroup,
we consider the ind-variety $G/B$ and compute the cohomology
$H^\ell(G/B,\mathcal{O}_{-\lambda})$
of any $G$-equivariant line bundle $\mathcal{O}_{-\lambda}$ on
$G/B$. It has been known that, for a generic $\lambda$,
all cohomology groups of $\mathcal{O}_{-\lambda}$ vanish, and that a
non-generic equivariant
line bundle $\mathcal{O}_{-\lambda}$ has at most one
nonzero cohomology group. The new result of this paper is a
precise description of when
$H^j(G/B,\mathcal{O}_{-\lambda})$ is nonzero and the proof of the fact
that, whenever nonzero,
$H^j(G/B, \mathcal{O}_{-\lambda})$ is a $G$-module dual to a highest
weight module.
The main difficulty is in defining an appropriate analog $W_B$ of the
Weyl group, so that the action of $W_B$
on weights of $G$ is compatible with the analog of the Demazure
``action" of the Weyl group on the cohomology
of line bundles. The highest weight corresponding to $H^j(G/B,
\mathcal{O}_{-\lambda})$ is then computed
by a procedure similar to that in the classical Bott-Borel-Weil theorem.
Categories:22E65, 20G05 |
6. CJM 2010 (vol 62 pp. 1310)
Iwahori--Hecke Algebras of $SL_2$ over $2$-Dimensional Local Fields
In this paper we construct an analogue of Iwahori--Hecke algebras of $\operatorname{SL}_2$ over $2$-dimensional local fields. After considering coset decompositions of double cosets of a Iwahori subgroup, we define a convolution product on the space of certain functions on $\operatorname{SL}_2$, and prove that the product is well-defined, obtaining a Hecke algebra. Then we investigate the structure of the Hecke algebra. We determine the center of the Hecke algebra and consider Iwahori--Matsumoto type relations.
Categories:22E50, 20G25 |
7. CJM 2009 (vol 62 pp. 34)
Branching Rules for Ramified Principal Series Representations of $\mathrm{GL}(3)$ over a $p$-adic Field |
Branching Rules for Ramified Principal Series Representations of $\mathrm{GL}(3)$ over a $p$-adic Field We decompose the restriction of ramified principal series
representations of the $p$-adic group $\mathrm{GL}(3,\mathrm{k})$ to its
maximal compact subgroup $K=\mathrm{GL}(3,R)$. Its decomposition is
dependent on the degree of ramification of the inducing characters and
can be characterized in terms of filtrations of the Iwahori subgroup
in $K$. We establish several irreducibility results and illustrate
the decomposition with some examples.
Keywords:principal series representations, branching rules, maximal compact subgroups, representations of $p$-adic groups Categories:20G25, 20G05 |
8. CJM 2009 (vol 61 pp. 950)
Infinitesimal Invariants in a Function Algebra Let $G$ be a reductive connected linear algebraic group
over an algebraically closed field of positive
characteristic and let $\g$ be its Lie algebra.
First we extend a well-known result about the Picard group of a
semi-simple group to reductive groups.
Then we prove that if the derived group is simply connected
and $\g$ satisfies a
mild condition, the algebra $K[G]^\g$ of regular functions
on $G$ that are invariant under the action of $\g$ derived
from the conjugation action is a unique factorisation domain.
Categories:20G15, 13F15 |
9. CJM 2009 (vol 61 pp. 691)
Prehomogeneity on Quasi-Split Classical Groups and Poles of Intertwining Operators Suppose that $P=MN$ is a maximal parabolic subgroup of a quasisplit,
connected, reductive classical group $G$ defined over a non-Archimedean
field and $A$ is the standard intertwining operator attached to a
tempered representation of $G$ induced from $M$. In this paper we
determine all the cases in which $\Lie(N)$ is
prehomogeneous under $\Ad(m)$ when $N$ is non-abelian, and give necessary
and sufficient conditions for $A$ to have a pole at $0$.
Categories:22E50, 20G05 |
10. CJM 2007 (vol 59 pp. 449)
$\SL_n$, Orthogonality Relations and Transfer Let $\pi$ be a square integrable representation of
$G'=\SL_n(D)$, with $D$ a central division algebra of finite dimension
over a local field $F$ \emph{of non-zero characteristic}. We prove
that, on the elliptic set, the character of $\pi$ equals the complex
conjugate of the orbital integral of one of the pseudocoefficients
of~$\pi$. We prove also the orthogonality relations for characters of
square integrable representations of $G'$. We prove the stable
transfer of orbital integrals between $\SL_n(F)$ and its inner forms.
Category:20G05 |
11. CJM 2006 (vol 58 pp. 897)
Distributions invariantes sur les groupes rÃ©ductifs quasi-dÃ©ployÃ©s Soit $F$ un corps local non archim\'edien, et $G$ le groupe des
$F$-points d'un groupe r\'eductif connexe quasi-d\'eploy\'e d\'efini sur $F$.
Dans cet article, on s'int\'eresse aux distributions sur $G$ invariantes
par conjugaison, et \`a l'espace de leurs restrictions \`a l'alg\`ebre de
Hecke $\mathcal{H}$ des fonctions sur $G$ \`a support compact
biinvariantes par un sous-groupe d'Iwahori $I$ donn\'e. On montre tout
d'abord que les valeurs d'une telle distribution sur $\mathcal{H}$
sont enti\`erement d\'etermin\'ees par sa restriction au sous-espace de
dimension finie des \'el\'ements de $\mathcal{H}$ \`a support dans la
r\'eunion des sous-groupes parahoriques de $G$ contenant $I$. On utilise
ensuite cette propri\'et\'e pour montrer, moyennant certaines conditions
sur $G$, que cet espace est engendr\'e d'une part par certaines
int\'egrales orbitales semi-simples, d'autre part par les int\'egrales
orbitales unipotentes, en montrant tout d'abord des r\'esultats
analogues sur les groupes finis.
Keywords:reductive $p$-adic groups, orbital integrals, invariant distributions Categories:22E35, 20G40 |
12. CJM 2005 (vol 57 pp. 648)
Branching Rules for Principal Series Representations of $SL(2)$ over a $p$-adic Field We explicitly describe the decomposition into irreducibles of
the restriction of the principal
series representations of $SL(2,k)$, for $k$ a $p$-adic field,
to each of its two maximal compact subgroups (up to conjugacy).
We identify these irreducible subrepresentations in the
Kirillov-type classification
of Shalika. We go on to explicitly describe the decomposition
of the reducible principal series of $SL(2,k)$ in terms of the
restrictions of its irreducible constituents to a maximal compact
subgroup.
Keywords:representations of $p$-adic groups, $p$-adic integers, orbit method, $K$-types Categories:20G25, 22E35, 20H25 |
13. CJM 2004 (vol 56 pp. 945)
Smoothness of Quotients Associated \\With a Pair of Commuting Involutions Let $\sigma$, $\theta$ be commuting involutions of the connected semisimple
algebraic group $G$ where $\sigma$, $\theta$ and $G$ are defined over
an algebraically closed field $\k$, $\Char \k=0$. Let $H:=G^\sigma$
and $K:=G^\theta$ be the fixed point groups. We have an action
$(H\times K)\times G\to G$, where $((h,k),g)\mapsto hgk\inv$, $h\in
H$, $k\in K$, $g\in G$. Let $\quot G{(H\times K)}$ denote the
categorical quotient $\Spec \O(G)^{H\times K}$. We determine when this
quotient is smooth. Our results are a generalization of those of
Steinberg \cite{Steinberg75}, Pittie \cite{Pittie72} and Richardson
\cite{Rich82b} in the symmetric case where $\sigma=\theta$ and $H=K$.
Categories:20G15, 20G20, 22E15, 22E46 |
14. CJM 2004 (vol 56 pp. 246)
ÃlÃ©ments unipotents rÃ©guliers des sous-groupes de Levi We investigate the structure of the centralizer of a regular unipotent element
of a Levi subgroup of a reductive group. We also investigate the structure of
the group of components of this centralizer in relation with the notion of
cuspidal local system defined by Lusztig. We determine its unipotent radical,
we prove that it admits a Levi complement, and we get some properties on its Weyl
group. As an application, we prove some results which were announced in previous
paper on regular unipotent elements.
Nous \'etudions la structure du centralisateur d'un \'el\'ement unipotent
r\'egulier d'un sous-groupe de Levi d'un groupe r\'eductif, ainsi que la structure
du groupe des composantes de ce centralisateur en relation avec la notion de
syst\`eme local cuspidal d\'efinie par Lusztig. Nous d\'eterminons son radical
unipotent, montrons l'existence d'un compl\'ement de Levi et \'etudions la
structure de son groupe de Weyl. Comme application, nous d\'emontrons des
r\'esultats qui \'etaient annonc\'es dans un pr\'ec\'edent article de l'auteur
sur les \'el\'ements unipotents r\'eguliers.
Category:20G |
15. CJM 2003 (vol 55 pp. 1080)
Quaternions and Some Global Properties of Hyperbolic $5$-Manifolds We provide an explicit thick and thin decomposition for oriented
hyperbolic manifolds $M$ of dimension $5$. The result implies improved
universal lower bounds for the volume $\rmvol_5(M)$ and, for $M$
compact, new estimates relating the injectivity radius and the diameter
of $M$ with $\rmvol_5(M)$. The quantification of the thin part is
based upon the identification of the isometry group of the universal
space by the matrix group $\PS_\Delta {\rm L} (2,\mathbb{H})$ of
quaternionic $2\times 2$-matrices with Dieudonn\'e determinant
$\Delta$ equal to $1$ and isolation properties of $\PS_\Delta {\rm
L} (2,\mathbb{H})$.
Categories:53C22, 53C25, 57N16, 57S30, 51N30, 20G20, 22E40 |
16. CJM 2002 (vol 54 pp. 1229)
The Weil Character of the Unitary Group Associated to a Finite Local Ring Let $\mathbf{R}/R$ be a quadratic extension of finite, commutative,
local and principal rings of odd characteristic. Denote by
$\mathbf{U}_n (\mathbf{R})$ the unitary group of rank $n$ associated
to $\mathbf{R}/R$. The Weil representation of $\mathbf{U}_n
(\mathbf{R})$ is defined and its character is explicitly computed.
Category:20G05 |
17. CJM 2000 (vol 52 pp. 1018)
Essential Dimensions of Algebraic Groups and a Resolution Theorem for $G$-Varieties Let $G$ be an algebraic group and let $X$ be a generically free $G$-variety.
We show that $X$ can be transformed, by a sequence of blowups with smooth
$G$-equivariant centers, into a $G$-variety $X'$ with the following
property the stabilizer of every point of $X'$ is isomorphic to a
semidirect product $U \sdp A$ of a unipotent group $U$ and a
diagonalizable group $A$.
As an application of this result, we prove new lower bounds on essential
dimensions of some algebraic groups. We also show that certain
polynomials in one variable cannot be simplified by a Tschirnhaus
transformation.
Categories:14L30, 14E15, 14E05, 12E05, 20G10 |
18. CJM 2000 (vol 52 pp. 449)
An Intertwining Result for $p$-adic Groups For a reductive $p$-adic group $G$, we compute the supports of the Hecke
algebras for the $K$-types for $G$ lying in a certain frequently-occurring
class. When $G$ is classical, we compute the intertwining between any
two such $K$-types.
Categories:22E50, 20G05 |
19. CJM 2000 (vol 52 pp. 265)
On Orbit Closures of Symmetric Subgroups in Flag Varieties We study $K$-orbits in $G/P$ where $G$ is a complex connected
reductive group, $P \subseteq G$ is a parabolic subgroup, and $K
\subseteq G$ is the fixed point subgroup of an involutive
automorphism $\theta$. Generalizing work of Springer, we
parametrize the (finite) orbit set $K \setminus G \slash P$ and we
determine the isotropy groups. As a consequence, we describe the
closed (resp. affine) orbits in terms of $\theta$-stable
(resp. $\theta$-split) parabolic subgroups. We also describe the
decomposition of any $(K,P)$-double coset in $G$ into
$(K,B)$-double cosets, where $B \subseteq P$ is a Borel subgroup.
Finally, for certain $K$-orbit closures $X \subseteq G/B$, and for
any homogeneous line bundle $\mathcal{L}$ on $G/B$ having nonzero
global sections, we show that the restriction map $\res_X \colon
H^0 (G/B, \mathcal{L}) \to H^0 (X, \mathcal{L})$ is surjective and
that $H^i (X, \mathcal{L}) = 0$ for $i \geq 1$. Moreover, we
describe the $K$-module $H^0 (X, \mathcal{L})$. This gives
information on the restriction to $K$ of the simple $G$-module $H^0
(G/B, \mathcal{L})$. Our construction is a geometric analogue of
Vogan and Sepanski's approach to extremal $K$-types.
Keywords:flag variety, symmetric subgroup Categories:14M15, 20G05 |
20. CJM 2000 (vol 52 pp. 438)
On Some $q$-Analogs of a Theorem of Kostant-Rallis In the first part of this paper generalizations of Hesselink's
$q$-analog of Kostant's multiplicity formula for the action of a
semisimple Lie group on the polynomials on its Lie algebra are given
in the context of the Kostant-Rallis theorem. They correspond to the
cases of real semisimple Lie groups with one conjugacy class of Cartan
subgroup. In the second part of the paper a $q$-analog of the
Kostant-Rallis theorem is given for the real group $\SL(4,\mathbb{R})$
(that is $\SO(4)$ acting on symmetric $4 \times 4$ matrices). This
example plays two roles. First it contrasts with the examples of the
first part. Second it has implications to the study of entanglement
of mixed 2 qubit states in quantum computation.
Categories:22E47, 20G05 |
21. CJM 1999 (vol 51 pp. 1149)
Linear Groups Generated by Reflection Tori A reflection is an invertible linear transformation of a vector
space fixing a given hyperplane, its axis, vectorwise and a given
complement to this hyperplane, its center, setwise. A reflection
torus is a one-dimensional group generated by all reflections with
fixed axis and center.
In this paper we classify subgroups of general linear groups (in
arbitrary dimension and defined over arbitrary fields) generated by
reflection tori.
Categories:20Hxx, 20Gxx, 51A50 |
22. CJM 1999 (vol 51 pp. 1307)
Quadratic Integers and Coxeter Groups Matrices whose entries belong to certain rings of algebraic
integers can be associated with discrete groups of transformations
of inversive $n$-space or hyperbolic $(n+1)$-space
$\mbox{H}^{n+1}$. For small $n$, these may be Coxeter groups,
generated by reflections, or certain subgroups whose generators
include direct isometries of $\mbox{H}^{n+1}$. We show how linear
fractional transformations over rings of rational and (real or
imaginary) quadratic integers are related to the symmetry groups of
regular tilings of the hyperbolic plane or 3-space. New light is
shed on the properties of the rational modular group $\PSL_2
(\bbZ)$, the Gaussian modular (Picard) group $\PSL_2 (\bbZ[{\it
i}])$, and the Eisenstein modular group $\PSL_2 (\bbZ[\omega ])$.
Categories:11F06, 20F55, 20G20, 20H10, 22E40 |
23. CJM 1999 (vol 51 pp. 1194)
Subregular Nilpotent Elements and Bases in $K$-Theory In this paper we describe a canonical basis for the equivariant
$K$-theory (with respect to a $\bc^*$-action) of the variety of
Borel subalgebras containing a subregular nilpotent element of a
simple complex Lie algebra of type $D$ or~$E$.
Category:20G99 |
24. CJM 1999 (vol 51 pp. 1175)
Reflection Subquotients of Unitary Reflection Groups Let $G$ be a finite group generated by (pseudo-) reflections in a
complex vector space and let $g$ be any linear transformation which
normalises $G$. In an earlier paper, the authors showed how to
associate with any maximal eigenspace of an element of the coset
$gG$, a subquotient of $G$ which acts as a reflection group on the
eigenspace. In this work, we address the questions of
irreducibility and the coexponents of this subquotient, as well as
centralisers in $G$ of certain elements of the coset. A criterion
is also given in terms of the invariant degrees of $G$ for an
integer to be regular for $G$. A key tool is the investigation of
extensions of invariant vector fields on the eigenspace, which
leads to some results and questions concerning the geometry of
intersections of invariant hypersurfaces.
Categories:51F15, 20H15, 20G40, 20F55, 14C17 |
25. CJM 1998 (vol 50 pp. 829)
Conjugacy classes and nilpotent variety of a reductive monoid We continue in this paper our study of conjugacy classes
of a reductive monoid $M$. The main theorems establish a strong connection
with the Bruhat-Renner decomposition of $M$. We use our results to decompose
the variety $M_{\nil}$ of nilpotent elements of $M$ into irreducible components.
We also identify a class of nilpotent elements that we call standard and prove
that the number of conjugacy classes of standard nilpotent elements is always
finite.
Categories:20G99, 20M10, 14M99, 20F55 |