CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 20G ( Linear algebraic groups and related topics {For arithmetic theory, see 11E57, 11H56; for geometric theory, see 14Lxx, 22Exx; for other methods in representation theory, see 15A30, 22E45, 22E46, 22E47, 22E50, 22E55} )

  Expand all        Collapse all Results 1 - 25 of 27

1. CJM 2014 (vol 66 pp. 1201)

Adler, Jeffrey D.; Lansky, Joshua M.
Lifting Representations of Finite Reductive Groups I: Semisimple Conjugacy Classes
Suppose that $\tilde{G}$ is a connected reductive group defined over a field $k$, and $\Gamma$ is a finite group acting via $k$-automorphisms of $\tilde{G}$ satisfying a certain quasi-semisimplicity condition. Then the identity component of the group of $\Gamma$-fixed points in $\tilde{G}$ is reductive. We axiomatize the main features of the relationship between this fixed-point group and the pair $(\tilde{G},\Gamma)$, and consider any group $G$ satisfying the axioms. If both $\tilde{G}$ and $G$ are $k$-quasisplit, then we can consider their duals $\tilde{G}^*$ and $G^*$. We show the existence of and give an explicit formula for a natural map from the set of semisimple stable conjugacy classes in $G^*(k)$ to the analogous set for $\tilde{G}^*(k)$. If $k$ is finite, then our groups are automatically quasisplit, and our result specializes to give a map of semisimple conjugacy classes. Since such classes parametrize packets of irreducible representations of $G(k)$ and $\tilde{G}(k)$, one obtains a mapping of such packets.

Keywords:reductive group, lifting, conjugacy class, representation, Lusztig series
Categories:20G15, 20G40, 20C33, 22E35

2. CJM Online first

McReynolds, D. B.
Geometric Spectra and Commensurability
The work of Reid, Chinburg-Hamilton-Long-Reid, Prasad-Rapinchuk, and the author with Reid have demonstrated that geodesics or totally geodesic submanifolds can sometimes be used to determine the commensurability class of an arithmetic manifold. The main results of this article show that generalizations of these results to other arithmetic manifolds will require a wide range of data. Specifically, we prove that certain incommensurable arithmetic manifolds arising from the semisimple Lie groups of the form $(\operatorname{SL}(d,\mathbf{R}))^r \times (\operatorname{SL}(d,\mathbf{C}))^s$ have the same commensurability classes of totally geodesic submanifolds coming from a fixed field. This construction is algebraic and shows the failure of determining, in general, a central simple algebra from subalgebras over a fixed field. This, in turn, can be viewed in terms of forms of $\operatorname{SL}_d$ and the failure of determining the form via certain classes of algebraic subgroups.

Keywords:arithmetic groups, Brauer groups, arithmetic equivalence, locally symmetric manifolds
Category:20G25

3. CJM Online first

Santoprete, Manuele; Scheurle, Jürgen; Walcher, Sebastian
Motion in a Symmetric Potential on the Hyperbolic Plane
We study the motion of a particle in the hyperbolic plane (embedded in Minkowski space), under the action of a potential that depends only on one variable. This problem is the analogous to the spherical pendulum in a unidirectional force field. However, for the discussion of the hyperbolic plane one has to distinguish three inequivalent cases, depending on the direction of the force field. Symmetry reduction, with respect to groups that are not necessarily compact or even reductive, is carried out by way of Poisson varieties and Hilbert maps. For each case the dynamics is discussed, with special attention to linear potentials.

Keywords:Hamiltonian systems with symmetry, symmetries, non-compact symmetry groups, singular reduction
Categories:37J15, 70H33, 70F99, 37C80, 34C14, , 20G20

4. CJM 2011 (vol 64 pp. 409)

Rainer, Armin
Lifting Quasianalytic Mappings over Invariants
Let $\rho \colon G \to \operatorname{GL}(V)$ be a rational finite dimensional complex representation of a reductive linear algebraic group $G$, and let $\sigma_1,\dots,\sigma_n$ be a system of generators of the algebra of invariant polynomials $\mathbb C[V]^G$. We study the problem of lifting mappings $f\colon \mathbb R^q \supseteq U \to \sigma(V) \subseteq \mathbb C^n$ over the mapping of invariants $\sigma=(\sigma_1,\dots,\sigma_n) \colon V \to \sigma(V)$. Note that $\sigma(V)$ can be identified with the categorical quotient $V /\!\!/ G$ and its points correspond bijectively to the closed orbits in $V$. We prove that if $f$ belongs to a quasianalytic subclass $\mathcal C \subseteq C^\infty$ satisfying some mild closedness properties that guarantee resolution of singularities in $\mathcal C$, e.g., the real analytic class, then $f$ admits a lift of the same class $\mathcal C$ after desingularization by local blow-ups and local power substitutions. As a consequence we show that $f$ itself allows for a lift that belongs to $\operatorname{SBV}_{\operatorname{loc}}$, i.e., special functions of bounded variation. If $\rho$ is a real representation of a compact Lie group, we obtain stronger versions.

Keywords:lifting over invariants, reductive group representation, quasianalytic mappings, desingularization, bounded variation
Categories:14L24, 14L30, 20G20, 22E45

5. CJM 2011 (vol 63 pp. 1307)

Dimitrov, Ivan; Penkov, Ivan
A Bott-Borel-Weil Theorem for Diagonal Ind-groups
A diagonal ind-group is a direct limit of classical affine algebraic groups of growing rank under a class of inclusions that contains the inclusion $$ SL(n)\to SL(2n), \quad M\mapsto \begin{pmatrix}M & 0 \\ 0 & M \end{pmatrix} $$ as a typical special case. If $G$ is a diagonal ind-group and $B\subset G$ is a Borel ind-subgroup, we consider the ind-variety $G/B$ and compute the cohomology $H^\ell(G/B,\mathcal{O}_{-\lambda})$ of any $G$-equivariant line bundle $\mathcal{O}_{-\lambda}$ on $G/B$. It has been known that, for a generic $\lambda$, all cohomology groups of $\mathcal{O}_{-\lambda}$ vanish, and that a non-generic equivariant line bundle $\mathcal{O}_{-\lambda}$ has at most one nonzero cohomology group. The new result of this paper is a precise description of when $H^j(G/B,\mathcal{O}_{-\lambda})$ is nonzero and the proof of the fact that, whenever nonzero, $H^j(G/B, \mathcal{O}_{-\lambda})$ is a $G$-module dual to a highest weight module. The main difficulty is in defining an appropriate analog $W_B$ of the Weyl group, so that the action of $W_B$ on weights of $G$ is compatible with the analog of the Demazure ``action" of the Weyl group on the cohomology of line bundles. The highest weight corresponding to $H^j(G/B, \mathcal{O}_{-\lambda})$ is then computed by a procedure similar to that in the classical Bott-Borel-Weil theorem.

Categories:22E65, 20G05

6. CJM 2010 (vol 62 pp. 1310)

Lee, Kyu-Hwan
Iwahori--Hecke Algebras of $SL_2$ over $2$-Dimensional Local Fields
In this paper we construct an analogue of Iwahori--Hecke algebras of $\operatorname{SL}_2$ over $2$-dimensional local fields. After considering coset decompositions of double cosets of a Iwahori subgroup, we define a convolution product on the space of certain functions on $\operatorname{SL}_2$, and prove that the product is well-defined, obtaining a Hecke algebra. Then we investigate the structure of the Hecke algebra. We determine the center of the Hecke algebra and consider Iwahori--Matsumoto type relations.

Categories:22E50, 20G25

7. CJM 2009 (vol 62 pp. 34)

Campbell, Peter S.; Nevins, Monica
Branching Rules for Ramified Principal Series Representations of $\mathrm{GL}(3)$ over a $p$-adic Field
We decompose the restriction of ramified principal series representations of the $p$-adic group $\mathrm{GL}(3,\mathrm{k})$ to its maximal compact subgroup $K=\mathrm{GL}(3,R)$. Its decomposition is dependent on the degree of ramification of the inducing characters and can be characterized in terms of filtrations of the Iwahori subgroup in $K$. We establish several irreducibility results and illustrate the decomposition with some examples.

Keywords:principal series representations, branching rules, maximal compact subgroups, representations of $p$-adic groups
Categories:20G25, 20G05

8. CJM 2009 (vol 61 pp. 950)

Tange, Rudolf
Infinitesimal Invariants in a Function Algebra
Let $G$ be a reductive connected linear algebraic group over an algebraically closed field of positive characteristic and let $\g$ be its Lie algebra. First we extend a well-known result about the Picard group of a semi-simple group to reductive groups. Then we prove that if the derived group is simply connected and $\g$ satisfies a mild condition, the algebra $K[G]^\g$ of regular functions on $G$ that are invariant under the action of $\g$ derived from the conjugation action is a unique factorisation domain.

Categories:20G15, 13F15

9. CJM 2009 (vol 61 pp. 691)

Yu, Xiaoxiang
Prehomogeneity on Quasi-Split Classical Groups and Poles of Intertwining Operators
Suppose that $P=MN$ is a maximal parabolic subgroup of a quasisplit, connected, reductive classical group $G$ defined over a non-Archimedean field and $A$ is the standard intertwining operator attached to a tempered representation of $G$ induced from $M$. In this paper we determine all the cases in which $\Lie(N)$ is prehomogeneous under $\Ad(m)$ when $N$ is non-abelian, and give necessary and sufficient conditions for $A$ to have a pole at $0$.

Categories:22E50, 20G05

10. CJM 2007 (vol 59 pp. 449)

Badulescu, Alexandru Ioan
$\SL_n$, Orthogonality Relations and Transfer
Let $\pi$ be a square integrable representation of $G'=\SL_n(D)$, with $D$ a central division algebra of finite dimension over a local field $F$ \emph{of non-zero characteristic}. We prove that, on the elliptic set, the character of $\pi$ equals the complex conjugate of the orbital integral of one of the pseudocoefficients of~$\pi$. We prove also the orthogonality relations for characters of square integrable representations of $G'$. We prove the stable transfer of orbital integrals between $\SL_n(F)$ and its inner forms.

Category:20G05

11. CJM 2006 (vol 58 pp. 897)

Courtès, François
Distributions invariantes sur les groupes réductifs quasi-déployés
Soit $F$ un corps local non archim\'edien, et $G$ le groupe des $F$-points d'un groupe r\'eductif connexe quasi-d\'eploy\'e d\'efini sur $F$. Dans cet article, on s'int\'eresse aux distributions sur $G$ invariantes par conjugaison, et \`a l'espace de leurs restrictions \`a l'alg\`ebre de Hecke $\mathcal{H}$ des fonctions sur $G$ \`a support compact biinvariantes par un sous-groupe d'Iwahori $I$ donn\'e. On montre tout d'abord que les valeurs d'une telle distribution sur $\mathcal{H}$ sont enti\`erement d\'etermin\'ees par sa restriction au sous-espace de dimension finie des \'el\'ements de $\mathcal{H}$ \`a support dans la r\'eunion des sous-groupes parahoriques de $G$ contenant $I$. On utilise ensuite cette propri\'et\'e pour montrer, moyennant certaines conditions sur $G$, que cet espace est engendr\'e d'une part par certaines int\'egrales orbitales semi-simples, d'autre part par les int\'egrales orbitales unipotentes, en montrant tout d'abord des r\'esultats analogues sur les groupes finis.

Keywords:reductive $p$-adic groups, orbital integrals, invariant distributions
Categories:22E35, 20G40

12. CJM 2005 (vol 57 pp. 648)

Nevins, Monica
Branching Rules for Principal Series Representations of $SL(2)$ over a $p$-adic Field
We explicitly describe the decomposition into irreducibles of the restriction of the principal series representations of $SL(2,k)$, for $k$ a $p$-adic field, to each of its two maximal compact subgroups (up to conjugacy). We identify these irreducible subrepresentations in the Kirillov-type classification of Shalika. We go on to explicitly describe the decomposition of the reducible principal series of $SL(2,k)$ in terms of the restrictions of its irreducible constituents to a maximal compact subgroup.

Keywords:representations of $p$-adic groups, $p$-adic integers, orbit method, $K$-types
Categories:20G25, 22E35, 20H25

13. CJM 2004 (vol 56 pp. 945)

Helminck, Aloysius G.; Schwarz, Gerald W.
Smoothness of Quotients Associated \\With a Pair of Commuting Involutions
Let $\sigma$, $\theta$ be commuting involutions of the connected semisimple algebraic group $G$ where $\sigma$, $\theta$ and $G$ are defined over an algebraically closed field $\k$, $\Char \k=0$. Let $H:=G^\sigma$ and $K:=G^\theta$ be the fixed point groups. We have an action $(H\times K)\times G\to G$, where $((h,k),g)\mapsto hgk\inv$, $h\in H$, $k\in K$, $g\in G$. Let $\quot G{(H\times K)}$ denote the categorical quotient $\Spec \O(G)^{H\times K}$. We determine when this quotient is smooth. Our results are a generalization of those of Steinberg \cite{Steinberg75}, Pittie \cite{Pittie72} and Richardson \cite{Rich82b} in the symmetric case where $\sigma=\theta$ and $H=K$.

Categories:20G15, 20G20, 22E15, 22E46

14. CJM 2004 (vol 56 pp. 246)

Bonnafé, Cédric
Éléments unipotents réguliers des sous-groupes de Levi
We investigate the structure of the centralizer of a regular unipotent element of a Levi subgroup of a reductive group. We also investigate the structure of the group of components of this centralizer in relation with the notion of cuspidal local system defined by Lusztig. We determine its unipotent radical, we prove that it admits a Levi complement, and we get some properties on its Weyl group. As an application, we prove some results which were announced in previous paper on regular unipotent elements. Nous \'etudions la structure du centralisateur d'un \'el\'ement unipotent r\'egulier d'un sous-groupe de Levi d'un groupe r\'eductif, ainsi que la structure du groupe des composantes de ce centralisateur en relation avec la notion de syst\`eme local cuspidal d\'efinie par Lusztig. Nous d\'eterminons son radical unipotent, montrons l'existence d'un compl\'ement de Levi et \'etudions la structure de son groupe de Weyl. Comme application, nous d\'emontrons des r\'esultats qui \'etaient annonc\'es dans un pr\'ec\'edent article de l'auteur sur les \'el\'ements unipotents r\'eguliers.

Category:20G

15. CJM 2003 (vol 55 pp. 1080)

Kellerhals, Ruth
Quaternions and Some Global Properties of Hyperbolic $5$-Manifolds
We provide an explicit thick and thin decomposition for oriented hyperbolic manifolds $M$ of dimension $5$. The result implies improved universal lower bounds for the volume $\rmvol_5(M)$ and, for $M$ compact, new estimates relating the injectivity radius and the diameter of $M$ with $\rmvol_5(M)$. The quantification of the thin part is based upon the identification of the isometry group of the universal space by the matrix group $\PS_\Delta {\rm L} (2,\mathbb{H})$ of quaternionic $2\times 2$-matrices with Dieudonn\'e determinant $\Delta$ equal to $1$ and isolation properties of $\PS_\Delta {\rm L} (2,\mathbb{H})$.

Categories:53C22, 53C25, 57N16, 57S30, 51N30, 20G20, 22E40

16. CJM 2002 (vol 54 pp. 1229)

Gow, Roderick; Szechtman, Fernando
The Weil Character of the Unitary Group Associated to a Finite Local Ring
Let $\mathbf{R}/R$ be a quadratic extension of finite, commutative, local and principal rings of odd characteristic. Denote by $\mathbf{U}_n (\mathbf{R})$ the unitary group of rank $n$ associated to $\mathbf{R}/R$. The Weil representation of $\mathbf{U}_n (\mathbf{R})$ is defined and its character is explicitly computed.

Category:20G05

17. CJM 2000 (vol 52 pp. 1018)

Reichstein, Zinovy; Youssin, Boris
Essential Dimensions of Algebraic Groups and a Resolution Theorem for $G$-Varieties
Let $G$ be an algebraic group and let $X$ be a generically free $G$-variety. We show that $X$ can be transformed, by a sequence of blowups with smooth $G$-equivariant centers, into a $G$-variety $X'$ with the following property the stabilizer of every point of $X'$ is isomorphic to a semidirect product $U \sdp A$ of a unipotent group $U$ and a diagonalizable group $A$. As an application of this result, we prove new lower bounds on essential dimensions of some algebraic groups. We also show that certain polynomials in one variable cannot be simplified by a Tschirnhaus transformation.

Categories:14L30, 14E15, 14E05, 12E05, 20G10

18. CJM 2000 (vol 52 pp. 449)

Adler, Jeffrey D.; Roche, Alan
An Intertwining Result for $p$-adic Groups
For a reductive $p$-adic group $G$, we compute the supports of the Hecke algebras for the $K$-types for $G$ lying in a certain frequently-occurring class. When $G$ is classical, we compute the intertwining between any two such $K$-types.

Categories:22E50, 20G05

19. CJM 2000 (vol 52 pp. 265)

Brion, Michel; Helminck, Aloysius G.
On Orbit Closures of Symmetric Subgroups in Flag Varieties
We study $K$-orbits in $G/P$ where $G$ is a complex connected reductive group, $P \subseteq G$ is a parabolic subgroup, and $K \subseteq G$ is the fixed point subgroup of an involutive automorphism $\theta$. Generalizing work of Springer, we parametrize the (finite) orbit set $K \setminus G \slash P$ and we determine the isotropy groups. As a consequence, we describe the closed (resp. affine) orbits in terms of $\theta$-stable (resp. $\theta$-split) parabolic subgroups. We also describe the decomposition of any $(K,P)$-double coset in $G$ into $(K,B)$-double cosets, where $B \subseteq P$ is a Borel subgroup. Finally, for certain $K$-orbit closures $X \subseteq G/B$, and for any homogeneous line bundle $\mathcal{L}$ on $G/B$ having nonzero global sections, we show that the restriction map $\res_X \colon H^0 (G/B, \mathcal{L}) \to H^0 (X, \mathcal{L})$ is surjective and that $H^i (X, \mathcal{L}) = 0$ for $i \geq 1$. Moreover, we describe the $K$-module $H^0 (X, \mathcal{L})$. This gives information on the restriction to $K$ of the simple $G$-module $H^0 (G/B, \mathcal{L})$. Our construction is a geometric analogue of Vogan and Sepanski's approach to extremal $K$-types.

Keywords:flag variety, symmetric subgroup
Categories:14M15, 20G05

20. CJM 2000 (vol 52 pp. 438)

Wallach, N. R.; Willenbring, J.
On Some $q$-Analogs of a Theorem of Kostant-Rallis
In the first part of this paper generalizations of Hesselink's $q$-analog of Kostant's multiplicity formula for the action of a semisimple Lie group on the polynomials on its Lie algebra are given in the context of the Kostant-Rallis theorem. They correspond to the cases of real semisimple Lie groups with one conjugacy class of Cartan subgroup. In the second part of the paper a $q$-analog of the Kostant-Rallis theorem is given for the real group $\SL(4,\mathbb{R})$ (that is $\SO(4)$ acting on symmetric $4 \times 4$ matrices). This example plays two roles. First it contrasts with the examples of the first part. Second it has implications to the study of entanglement of mixed 2 qubit states in quantum computation.

Categories:22E47, 20G05

21. CJM 1999 (vol 51 pp. 1149)

Cohen, A. M.; Cuypers, H.; Sterk, H.
Linear Groups Generated by Reflection Tori
A reflection is an invertible linear transformation of a vector space fixing a given hyperplane, its axis, vectorwise and a given complement to this hyperplane, its center, setwise. A reflection torus is a one-dimensional group generated by all reflections with fixed axis and center. In this paper we classify subgroups of general linear groups (in arbitrary dimension and defined over arbitrary fields) generated by reflection tori.

Categories:20Hxx, 20Gxx, 51A50

22. CJM 1999 (vol 51 pp. 1307)

Johnson, Norman W.; Weiss, Asia Ivić
Quadratic Integers and Coxeter Groups
Matrices whose entries belong to certain rings of algebraic integers can be associated with discrete groups of transformations of inversive $n$-space or hyperbolic $(n+1)$-space $\mbox{H}^{n+1}$. For small $n$, these may be Coxeter groups, generated by reflections, or certain subgroups whose generators include direct isometries of $\mbox{H}^{n+1}$. We show how linear fractional transformations over rings of rational and (real or imaginary) quadratic integers are related to the symmetry groups of regular tilings of the hyperbolic plane or 3-space. New light is shed on the properties of the rational modular group $\PSL_2 (\bbZ)$, the Gaussian modular (Picard) group $\PSL_2 (\bbZ[{\it i}])$, and the Eisenstein modular group $\PSL_2 (\bbZ[\omega ])$.

Categories:11F06, 20F55, 20G20, 20H10, 22E40

23. CJM 1999 (vol 51 pp. 1194)

Lusztig, G.
Subregular Nilpotent Elements and Bases in $K$-Theory
In this paper we describe a canonical basis for the equivariant $K$-theory (with respect to a $\bc^*$-action) of the variety of Borel subalgebras containing a subregular nilpotent element of a simple complex Lie algebra of type $D$ or~$E$.

Category:20G99

24. CJM 1999 (vol 51 pp. 1175)

Lehrer, G. I.; Springer, T. A.
Reflection Subquotients of Unitary Reflection Groups
Let $G$ be a finite group generated by (pseudo-) reflections in a complex vector space and let $g$ be any linear transformation which normalises $G$. In an earlier paper, the authors showed how to associate with any maximal eigenspace of an element of the coset $gG$, a subquotient of $G$ which acts as a reflection group on the eigenspace. In this work, we address the questions of irreducibility and the coexponents of this subquotient, as well as centralisers in $G$ of certain elements of the coset. A criterion is also given in terms of the invariant degrees of $G$ for an integer to be regular for $G$. A key tool is the investigation of extensions of invariant vector fields on the eigenspace, which leads to some results and questions concerning the geometry of intersections of invariant hypersurfaces.

Categories:51F15, 20H15, 20G40, 20F55, 14C17

25. CJM 1998 (vol 50 pp. 829)

Putcha, Mohan S.
Conjugacy classes and nilpotent variety of a reductive monoid
We continue in this paper our study of conjugacy classes of a reductive monoid $M$. The main theorems establish a strong connection with the Bruhat-Renner decomposition of $M$. We use our results to decompose the variety $M_{\nil}$ of nilpotent elements of $M$ into irreducible components. We also identify a class of nilpotent elements that we call standard and prove that the number of conjugacy classes of standard nilpotent elements is always finite.

Categories:20G99, 20M10, 14M99, 20F55
Page
   1 2    

© Canadian Mathematical Society, 2014 : https://cms.math.ca/