CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 20G40 ( Linear algebraic groups over finite fields )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2006 (vol 58 pp. 897)

Courtès, François
Distributions invariantes sur les groupes réductifs quasi-déployés
Soit $F$ un corps local non archim\'edien, et $G$ le groupe des $F$-points d'un groupe r\'eductif connexe quasi-d\'eploy\'e d\'efini sur $F$. Dans cet article, on s'int\'eresse aux distributions sur $G$ invariantes par conjugaison, et \`a l'espace de leurs restrictions \`a l'alg\`ebre de Hecke $\mathcal{H}$ des fonctions sur $G$ \`a support compact biinvariantes par un sous-groupe d'Iwahori $I$ donn\'e. On montre tout d'abord que les valeurs d'une telle distribution sur $\mathcal{H}$ sont enti\`erement d\'etermin\'ees par sa restriction au sous-espace de dimension finie des \'el\'ements de $\mathcal{H}$ \`a support dans la r\'eunion des sous-groupes parahoriques de $G$ contenant $I$. On utilise ensuite cette propri\'et\'e pour montrer, moyennant certaines conditions sur $G$, que cet espace est engendr\'e d'une part par certaines int\'egrales orbitales semi-simples, d'autre part par les int\'egrales orbitales unipotentes, en montrant tout d'abord des r\'esultats analogues sur les groupes finis.

Keywords:reductive $p$-adic groups, orbital integrals, invariant distributions
Categories:22E35, 20G40

2. CJM 1999 (vol 51 pp. 1175)

Lehrer, G. I.; Springer, T. A.
Reflection Subquotients of Unitary Reflection Groups
Let $G$ be a finite group generated by (pseudo-) reflections in a complex vector space and let $g$ be any linear transformation which normalises $G$. In an earlier paper, the authors showed how to associate with any maximal eigenspace of an element of the coset $gG$, a subquotient of $G$ which acts as a reflection group on the eigenspace. In this work, we address the questions of irreducibility and the coexponents of this subquotient, as well as centralisers in $G$ of certain elements of the coset. A criterion is also given in terms of the invariant degrees of $G$ for an integer to be regular for $G$. A key tool is the investigation of extensions of invariant vector fields on the eigenspace, which leads to some results and questions concerning the geometry of intersections of invariant hypersurfaces.

Categories:51F15, 20H15, 20G40, 20F55, 14C17

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/