CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 20G15 ( Linear algebraic groups over arbitrary fields )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2009 (vol 61 pp. 950)

Tange, Rudolf
Infinitesimal Invariants in a Function Algebra
Let $G$ be a reductive connected linear algebraic group over an algebraically closed field of positive characteristic and let $\g$ be its Lie algebra. First we extend a well-known result about the Picard group of a semi-simple group to reductive groups. Then we prove that if the derived group is simply connected and $\g$ satisfies a mild condition, the algebra $K[G]^\g$ of regular functions on $G$ that are invariant under the action of $\g$ derived from the conjugation action is a unique factorisation domain.

Categories:20G15, 13F15

2. CJM 2004 (vol 56 pp. 945)

Helminck, Aloysius G.; Schwarz, Gerald W.
Smoothness of Quotients Associated \\With a Pair of Commuting Involutions
Let $\sigma$, $\theta$ be commuting involutions of the connected semisimple algebraic group $G$ where $\sigma$, $\theta$ and $G$ are defined over an algebraically closed field $\k$, $\Char \k=0$. Let $H:=G^\sigma$ and $K:=G^\theta$ be the fixed point groups. We have an action $(H\times K)\times G\to G$, where $((h,k),g)\mapsto hgk\inv$, $h\in H$, $k\in K$, $g\in G$. Let $\quot G{(H\times K)}$ denote the categorical quotient $\Spec \O(G)^{H\times K}$. We determine when this quotient is smooth. Our results are a generalization of those of Steinberg \cite{Steinberg75}, Pittie \cite{Pittie72} and Richardson \cite{Rich82b} in the symmetric case where $\sigma=\theta$ and $H=K$.

Categories:20G15, 20G20, 22E15, 22E46

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/