Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 20F67 ( Hyperbolic groups and nonpositively curved groups )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2005 (vol 57 pp. 1056)

Ozawa, Narutaka; Rieffel, Marc A.
Hyperbolic Group $C^*$-Algebras and Free-Product $C^*$-Algebras as Compact Quantum Metric Spaces
Let $\ell$ be a length function on a group $G$, and let $M_{\ell}$ denote the operator of pointwise multiplication by $\ell$ on $\bell^2(G)$. Following Connes, $M_{\ell}$ can be used as a ``Dirac'' operator for $C_r^*(G)$. It defines a Lipschitz seminorm on $C_r^*(G)$, which defines a metric on the state space of $C_r^*(G)$. We show that if $G$ is a hyperbolic group and if $\ell$ is a word-length function on $G$, then the topology from this metric coincides with the weak-$*$ topology (our definition of a ``compact quantum metric space''). We show that a convenient framework is that of filtered $C^*$-algebras which satisfy a suitable ``Haagerup-type'' condition. We also use this framework to prove an analogous fact for certain reduced free products of $C^*$-algebras.

Categories:46L87, 20F67, 46L09

2. CJM 2005 (vol 57 pp. 416)

Wise, Daniel T.
Approximating Flats by Periodic Flats in \\CAT(0) Square Complexes
We investigate the problem of whether every immersed flat plane in a nonpositively curved square complex is the limit of periodic flat planes. Using a branched cover, we reduce the problem to the case of $\V$-complexes. We solve the problem for malnormal and cyclonormal $\V$-complexes. We also solve the problem for complete square complexes using a different approach. We give an application towards deciding whether the elements of fundamental groups of the spaces we study have commuting powers. We note a connection between the flat approximation problem and subgroup separability.

Keywords:CAT(0), periodic flat planes
Categories:20F67, 20F06

© Canadian Mathematical Society, 2014 :