Expand all Collapse all | Results 1 - 10 of 10 |
1. CJM 2013 (vol 66 pp. 323)
Asymptotical behaviour of roots of infinite Coxeter groups Let $W$ be an infinite Coxeter group. We initiate the study of the set
$E$ of limit points of ``normalized'' roots (representing the
directions of the roots) of W. We show that $E$ is contained in the
isotropic cone $Q$ of the bilinear form $B$ associated to a geometric
representation, and illustrate this property with numerous examples
and pictures in rank $3$ and $4$. We also define a natural geometric
action of $W$ on $E$, and then we exhibit a countable subset of $E$,
formed by limit points for the dihedral reflection subgroups of
$W$. We explain how this subset is built from the intersection
with $Q$ of the lines passing through two positive roots, and finally we
establish that it is dense in $E$.
Keywords:Coxeter group, root system, roots, limit point, accumulation set Categories:17B22, 20F55 |
2. CJM 2013 (vol 66 pp. 481)
On the Hadamard Product of Hopf Monoids Combinatorial structures that compose and decompose give rise to Hopf monoids
in Joyal's category of species. The Hadamard product of two Hopf monoids
is another Hopf monoid. We prove two main results regarding freeness of
Hadamard products. The first one states
that if one factor is connected and the other is free as a monoid,
their Hadamard product is free (and connected).
The second provides an explicit basis for the Hadamard
product when both factors are free.
The first main result is obtained by showing the existence of a one-parameter deformation
of the comonoid structure and appealing to a rigidity result of Loday and Ronco
that applies when the parameter is set to zero.
To obtain the second result, we introduce an operation on species that is intertwined
by the free monoid functor with the Hadamard product.
As an application of the first result, we deduce that the Boolean transform
of the dimension sequence of a connected Hopf monoid is nonnegative.
Keywords:species, Hopf monoid, Hadamard product, generating function, Boolean transform Categories:16T30, 18D35, 20B30, 18D10, 20F55 |
3. CJM 2013 (vol 66 pp. 354)
The Minimal Growth Rate of Cocompact Coxeter Groups in Hyperbolic 3-space Due to work of W. Parry it is known that the growth
rate of a hyperbolic Coxeter group acting cocompactly on ${\mathbb H^3}$
is a Salem number. This being the arithmetic situation, we prove that the simplex group
(3,5,3) has smallest growth rate among all cocompact hyperbolic
Coxeter groups, and that it is as such unique.
Our approach provides a different proof for
the analog situation in ${\mathbb H^2}$
where E. Hironaka identified Lehmer's number as the minimal growth
rate among all cocompact planar hyperbolic Coxeter groups and showed
that it is (uniquely) achieved by the Coxeter triangle group (3,7).
Keywords:hyperbolic Coxeter group, growth rate, Salem number Categories:20F55, 22E40, 51F15 |
4. CJM 2011 (vol 63 pp. 1238)
Casselman's Basis of Iwahori Vectors and the Bruhat Order W. Casselman defined a basis $f_u$ of Iwahori fixed vectors of a spherical
representation $(\pi, V)$ of a split semisimple $p$-adic group $G$ over a
nonarchimedean local field $F$ by the condition that it be dual to the
intertwining operators, indexed by elements $u$ of the Weyl group $W$. On
the other hand, there is a natural basis $\psi_u$, and one seeks to find the
transition matrices between the two bases. Thus, let $f_u = \sum_v \tilde{m}
(u, v) \psi_v$ and $\psi_u = \sum_v m (u, v) f_v$. Using the Iwahori-Hecke
algebra we prove that if a combinatorial condition is satisfied, then $m (u,
v) = \prod_{\alpha} \frac{1 - q^{- 1} \mathbf{z}^{\alpha}}{1
-\mathbf{z}^{\alpha}}$, where $\mathbf z$ are the Langlands parameters
for the representation and $\alpha$ runs through the set $S (u, v)$ of
positive coroots $\alpha \in \hat{\Phi}$ (the dual root system of $G$) such
that $u \leqslant v r_{\alpha} < v$ with $r_{\alpha}$ the reflection
corresponding to $\alpha$. The condition is conjecturally always satisfied
if $G$ is simply-laced and the Kazhdan-Lusztig polynomial $P_{w_0 v, w_0 u}
= 1$ with $w_0$ the long Weyl group element. There is a similar formula for
$\tilde{m}$ conjecturally satisfied if $P_{u, v} = 1$.
This leads to various combinatorial conjectures.
Keywords:Iwahori fixed vector, Iwahori Hecke algebra, Bruhat order, intertwining integrals Categories:20C08, 20F55, 22E50 |
5. CJM 2009 (vol 61 pp. 740)
On Geometric Flats in the CAT(0) Realization of Coxeter Groups and Tits Buildings Given a complete CAT(0) space $X$ endowed with a geometric action of a group $\Gamma$, it is known that if
$\Gamma$ contains a free abelian group of rank $n$, then $X$ contains a geometric flat of dimension $n$. We
prove the converse of this statement in the special case where $X$ is a convex subcomplex of the CAT(0)
realization of a Coxeter group $W$, and $\Gamma$ is a subgroup of $W$. In particular a convex cocompact subgroup
of a Coxeter group is Gromov-hyperbolic if and only if it does not contain a free abelian group of rank 2. Our
result also provides an explicit control on geometric flats in the CAT(0) realization of arbitrary Tits
buildings.
Keywords:Coxeter group, flat rank, $\cat0$ space, building Categories:20F55, 51F15, 53C23, 20E42, 51E24 |
6. CJM 2001 (vol 53 pp. 1121)
Monotone Paths on Zonotopes and Oriented Matroids Monotone paths on zonotopes and the natural generalization to maximal
chains in the poset of topes of an oriented matroid or arrangement of
pseudo-hyperplanes are studied with respect to a kind of local move,
called polygon move or flip. It is proved that any monotone path on a
$d$-dimensional zonotope with $n$ generators admits at least $\lceil
2n/(n-d+2) \rceil-1$ flips for all $n \ge d+2 \ge 4$ and that for any
fixed value of $n-d$, this lower bound is sharp for infinitely many
values of $n$. In particular, monotone paths on zonotopes which admit
only three flips are constructed in each dimension $d \ge 3$.
Furthermore, the previously known 2-connectivity of the graph of
monotone paths on a polytope is extended to the 2-connectivity of the
graph of maximal chains of topes of an oriented matroid. An
application in the context of Coxeter groups of a result known to be
valid for monotone paths on simple zonotopes is included.
Categories:52C35, 52B12, 52C40, 20F55 |
7. CJM 1999 (vol 51 pp. 1307)
Quadratic Integers and Coxeter Groups Matrices whose entries belong to certain rings of algebraic
integers can be associated with discrete groups of transformations
of inversive $n$-space or hyperbolic $(n+1)$-space
$\mbox{H}^{n+1}$. For small $n$, these may be Coxeter groups,
generated by reflections, or certain subgroups whose generators
include direct isometries of $\mbox{H}^{n+1}$. We show how linear
fractional transformations over rings of rational and (real or
imaginary) quadratic integers are related to the symmetry groups of
regular tilings of the hyperbolic plane or 3-space. New light is
shed on the properties of the rational modular group $\PSL_2
(\bbZ)$, the Gaussian modular (Picard) group $\PSL_2 (\bbZ[{\it
i}])$, and the Eisenstein modular group $\PSL_2 (\bbZ[\omega ])$.
Categories:11F06, 20F55, 20G20, 20H10, 22E40 |
8. CJM 1999 (vol 51 pp. 1240)
Realizations of Regular Toroidal Maps We determine and completely describe all pure realizations of the
finite regular toroidal polyhedra of types $\{3,6\}$ and $\{6,3\}$.
Keywords:regular maps, realizations of polytopes Categories:51M20, 20F55 |
9. CJM 1999 (vol 51 pp. 1175)
Reflection Subquotients of Unitary Reflection Groups Let $G$ be a finite group generated by (pseudo-) reflections in a
complex vector space and let $g$ be any linear transformation which
normalises $G$. In an earlier paper, the authors showed how to
associate with any maximal eigenspace of an element of the coset
$gG$, a subquotient of $G$ which acts as a reflection group on the
eigenspace. In this work, we address the questions of
irreducibility and the coexponents of this subquotient, as well as
centralisers in $G$ of certain elements of the coset. A criterion
is also given in terms of the invariant degrees of $G$ for an
integer to be regular for $G$. A key tool is the investigation of
extensions of invariant vector fields on the eigenspace, which
leads to some results and questions concerning the geometry of
intersections of invariant hypersurfaces.
Categories:51F15, 20H15, 20G40, 20F55, 14C17 |
10. CJM 1998 (vol 50 pp. 829)
Conjugacy classes and nilpotent variety of a reductive monoid We continue in this paper our study of conjugacy classes
of a reductive monoid $M$. The main theorems establish a strong connection
with the Bruhat-Renner decomposition of $M$. We use our results to decompose
the variety $M_{\nil}$ of nilpotent elements of $M$ into irreducible components.
We also identify a class of nilpotent elements that we call standard and prove
that the number of conjugacy classes of standard nilpotent elements is always
finite.
Categories:20G99, 20M10, 14M99, 20F55 |