Expand all Collapse all | Results 1 - 2 of 2 |
1. CJM 1998 (vol 50 pp. 1007)
Galois module structure of ambiguous ideals in biquadratic extensions Let $N/K$ be a biquadratic extension of algebraic number fields, and
$G=\Gal (N/K)$. Under a weak restriction on the ramification filtration
associated with each prime of $K$ above $2$, we explicitly describe the
$\bZ[G]$-module structure of each ambiguous ideal of $N$. We find under
this restriction that in the representation of each ambiguous ideal as a
$\bZ[G]$-module, the exponent (or multiplicity) of each indecomposable
module is determined by the invariants of ramification, alone.
For a given group, $G$, define ${\cal S}_G$ to be the set of
indecomposable $\bZ[G]$-modules, ${\cal M}$, such that there
is an extension, $N/K$, for which $G\cong\Gal (N/K)$, and ${\cal M}$
is a $\bZ[G]$-module summand of an ambiguous ideal of $N$. Can
${\cal S}_G$ ever be infinite? In this paper we answer this
question of Chinburg in the affirmative.
Keywords:Galois module structure, wild ramification Categories:11R33, 11S15, 20C32 |
2. CJM 1997 (vol 49 pp. 722)
Galois module structure of the integers in wildly ramified $C_p\times C_p$ extensions Let $L/K$ be a finite Galois extension of local fields which are finite
extensions of $\bQ_p$, the field of $p$-adic numbers. Let $\Gal (L/K)=G$,
and $\euO_L$ and $\bZ_p$ be the rings of integers in $L$ and $\bQ_p$,
respectively. And let $\euP_L$ denote the maximal ideal of $\euO_L$. We
determine, explicitly in terms of specific indecomposable $\bZ_p[G]$-modules,
the $\bZ_p[G]$-module structure of $\euO_L$ and $\euP_L$, for $L$, a
composite of two arithmetically disjoint, ramified cyclic extensions of
$K$, one of which is only weakly ramified in the sense of Erez \cite{erez}.
Keywords:Galois module structure---integral representation. Categories:11S15, 20C32 |