Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 20C05 ( Group rings of finite groups and their modules [See also 16S34] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 1998 (vol 50 pp. 401)

Li, Yuanlin
The hypercentre and the $n$-centre of the unit group of an integral group ring
In this paper, we first show that the central height of the unit group of the integral group ring of a periodic group is at most $2$. We then give a complete characterization of the $n$-centre of that unit group. The $n$-centre of the unit group is either the centre or the second centre (for $n \geq 2$).

Categories:16U60, 20C05

2. CJM 1998 (vol 50 pp. 167)

Halverson, Tom; Ram, Arun
Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of the complex reflection groups $G(r,p,n)$
Iwahori-Hecke algebras for the infinite series of complex reflection groups $G(r,p,n)$ were constructed recently in the work of Ariki and Koike~\cite{AK}, Brou\'e and Malle \cite{BM}, and Ariki~\cite{Ari}. In this paper we give Murnaghan-Nakayama type formulas for computing the irreducible characters of these algebras. Our method is a generalization of that in our earlier paper ~\cite{HR} in which we derived Murnaghan-Nakayama rules for the characters of the Iwahori-Hecke algebras of the classical Weyl groups. In both papers we have been motivated by C. Greene~\cite{Gre}, who gave a new derivation of the Murnaghan-Nakayama formula for irreducible symmetric group characters by summing diagonal matrix entries in Young's seminormal representations. We use the analogous representations of the Iwahori-Hecke algebra of $G(r,p,n)$ given by Ariki and Koike~\cite{AK} and Ariki ~\cite{Ari}.

Categories:20C05, 05E05

© Canadian Mathematical Society, 2014 :