CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 19B10 ( Stable range conditions )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2009 (vol 62 pp. 646)

Rupp, R.; Sasane, A.
Reducibility in AR(K), CR(K), and A(K)
Let $K$ denote a compact real symmetric subset of $\mathbb{C}$ and let $A_{\mathbb R}(K)$ denote the real Banach algebra of all real symmetric continuous functions on $K$ that are analytic in the interior $K^\circ$ of $K$, endowed with the supremum norm. We characterize all unimodular pairs $(f,g)$ in $A_{\mathbb R}(K)^2$ which are reducible. In addition, for an arbitrary compact $K$ in $\mathbb C$, we give a new proof (not relying on Banach algebra theory or elementary stable rank techniques) of the fact that the Bass stable rank of $A(K)$ is $1$. Finally, we also characterize all compact real symmetric sets $K$ such that $A_{\mathbb R}(K)$, respectively $C_{\mathbb R}(K)$, has Bass stable rank $1$.

Keywords:real Banach algebras, Bass stable rank, topological stable rank, reducibility
Categories:46J15, 19B10, 30H05, 93D15

2. CJM 2001 (vol 53 pp. 979)

Nagisa, Masaru; Osaka, Hiroyuki; Phillips, N. Christopher
Ranks of Algebras of Continuous $C^*$-Algebra Valued Functions
We prove a number of results about the stable and particularly the real ranks of tensor products of \ca s under the assumption that one of the factors is commutative. In particular, we prove the following: {\raggedright \begin{enumerate}[(5)] \item[(1)] If $X$ is any locally compact $\sm$-compact Hausdorff space and $A$ is any \ca, then\break $\RR \bigl( C_0 (X) \otimes A \bigr) \leq \dim (X) + \RR(A)$. \item[(2)] If $X$ is any locally compact Hausdorff space and $A$ is any \pisca, then $\RR \bigl( C_0 (X) \otimes A \bigr) \leq 1$. \item[(3)] $\RR \bigl( C ([0,1]) \otimes A \bigr) \geq 1$ for any nonzero \ca\ $A$, and $\sr \bigl( C ([0,1]^2) \otimes A \bigr) \geq 2$ for any unital \ca\ $A$. \item[(4)] If $A$ is a unital \ca\ such that $\RR(A) = 0$, $\sr (A) = 1$, and $K_1 (A) = 0$, then\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \item[(5)] There is a simple separable unital nuclear \ca\ $A$ such that $\RR(A) = 1$ and\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \end{enumerate}}

Categories:46L05, 46L52, 46L80, 19A13, 19B10

© Canadian Mathematical Society, 2014 : https://cms.math.ca/