Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 17B37 ( Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23] )

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM 2013 (vol 66 pp. 453)

Vaz, Pedro; Wagner, Emmanuel
A Remark on BMW algebra, $q$-Schur Algebras and Categorification
We prove that the 2-variable BMW algebra embeds into an algebra constructed from the HOMFLY-PT polynomial. We also prove that the $\mathfrak{so}_{2N}$-BMW algebra embeds in the $q$-Schur algebra of type $A$. We use these results to suggest a schema providing categorifications of the $\mathfrak{so}_{2N}$-BMW algebra.

Keywords:tangle algebras, BMW algebra, HOMFLY-PT Skein algebra, q-Schur algebra, categorification
Categories:57M27, 81R50, 17B37, 16W99

2. CJM 2007 (vol 59 pp. 1260)

Deng, Bangming; Du, Jie; Xiao, Jie
Generic Extensions and Canonical Bases for Cyclic Quivers
We use the monomial basis theory developed by Deng and Du to present an elementary algebraic construction of the canonical bases for both the Ringel--Hall algebra of a cyclic quiver and the positive part $\bU^+$ of the quantum affine $\frak{sl}_n$. This construction relies on analysis of quiver representations and the introduction of a new integral PBW-like basis for the Lusztig $\mathbb Z[v,v^{-1}]$-form of~$\bU^+$.

Categories:17B37, 16G20

3. CJM 2003 (vol 55 pp. 766)

Kerler, Thomas
Homology TQFT's and the Alexander--Reidemeister Invariant of 3-Manifolds via Hopf Algebras and Skein Theory
We develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of a 3-manifold from a surgery presentation employing the methods used in the construction of quantum invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence between the topological quantum field theory constructed by Frohman and Nicas using the homology of $U(1)$-representation varieties on the one side and the combinatorially constructed Hennings TQFT based on the quasitriangular Hopf algebra $\mathcal{N} = \mathbb{Z}/2 \ltimes \bigwedge^* \mathbb{R}^2$ on the other side. We find that both TQFT's are $\SL (2,\mathbb{R})$-equivariant functors and, as such, are isomorphic. The $\SL (2,\mathbb{R})$-action in the Hennings construction comes from the natural action on $\mathcal{N}$ and in the case of the Frohman--Nicas theory from the Hard--Lefschetz decomposition of the $U(1)$-moduli spaces given that they are naturally K\"ahler. The irreducible components of this TQFT, corresponding to simple representations of $\SL(2,\mathbb{Z})$ and $\Sp(2g,\mathbb{Z})$, thus yield a large family of homological TQFT's by taking sums and products. We give several examples of TQFT's and invariants that appear to fit into this family, such as Milnor and Reidemeister Torsion, Seiberg--Witten theories, Casson type theories for homology circles {\it \`a la} Donaldson, higher rank gauge theories following Frohman and Nicas, and the $\mathbb{Z}/p\mathbb{Z}$ reductions of Reshetikhin--Turaev theories over the cyclotomic integers $\mathbb{Z} [\zeta_p]$. We also conjecture that the Hennings TQFT for quantum-$\mathfrak{sl}_2$ is the product of the Reshetikhin--Turaev TQFT and such a homological TQFT.

Categories:57R56, 14D20, 16W30, 17B37, 18D35, 57M27

4. CJM 1997 (vol 49 pp. 1206)

Letzter, Gail
Subalgebras which appear in quantum Iwasawa decompositions
Let $g$ be a semisimple Lie algebra. Quantum analogs of the enveloping algebra of the fixed Lie subalgebra are introduced for involutions corresponding to the negative of a diagram automorphism. These subalgebras of the quantized enveloping algebra specialize to their classical counterparts. They are used to form an Iwasawa type decompostition and begin a study of quantum Harish-Chandra modules.


5. CJM 1997 (vol 49 pp. 772)

Jie, Xiao
Finite dimensional representations of $U_t\bigl(\rmsl (2)\bigr)$ at roots of unity
All finite dimensional indecomposable representations of $U_t (\rmsl (2))$ at roots of $1$ are determined.

Categories:16G10, 16G70, 17B37

© Canadian Mathematical Society, 2014 :