Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 17B20 ( Simple, semisimple, reductive (super)algebras )

  Expand all        Collapse all Results 1 - 5 of 5

1. CJM 2013 (vol 65 pp. 1287)

Reihani, Kamran
$K$-theory of Furstenberg Transformation Group $C^*$-algebras
The paper studies the $K$-theoretic invariants of the crossed product $C^{*}$-algebras associated with an important family of homeomorphisms of the tori $\mathbb{T}^{n}$ called Furstenberg transformations. Using the Pimsner-Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products, whose corresponding $n\times n$ integer matrices are unipotent of maximal degree, always have the same rank $a_{n}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a combinatorial significance. For example, every $a_{2n+1}$ is just the number of ways that $0$ can be represented as a sum of integers between $-n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdős), a simple, explicit formula for the asymptotic behavior of the sequence $\{a_{n}\}$ is given. Finally, we describe the order structure of the $K_{0}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips.

Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism
Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20

2. CJM 2003 (vol 55 pp. 1155)

Đoković, Dragomir Ž.; Litvinov, Michael
The Closure Ordering of Nilpotent Orbits of the Complex Symmetric Pair $(\SO_{p+q},\SO_p\times\SO_q)$
The main problem that is solved in this paper has the following simple formulation (which is not used in its solution). The group $K = \mathrm{O}_p ({\bf C}) \times \mathrm{O}_q ({\bf C})$ acts on the space $M_{p,q}$ of $p\times q$ complex matrices by $(a,b) \cdot x = axb^{-1}$, and so does its identity component $K^0 = \SO_p ({\bf C}) \times \SO_q ({\bf C})$. A $K$-orbit (or $K^0$-orbit) in $M_{p,q}$ is said to be nilpotent if its closure contains the zero matrix. The closure, $\overline{\mathcal{O}}$, of a nilpotent $K$-orbit (resp.\ $K^0$-orbit) ${\mathcal{O}}$ in $M_{p,q}$ is a union of ${\mathcal{O}}$ and some nilpotent $K$-orbits (resp.\ $K^0$-orbits) of smaller dimensions. The description of the closure of nilpotent $K$-orbits has been known for some time, but not so for the nilpotent $K^0$-orbits. A conjecture describing the closure of nilpotent $K^0$-orbits was proposed in \cite{DLS} and verified when $\min(p,q) \le 7$. In this paper we prove the conjecture. The proof is based on a study of two prehomogeneous vector spaces attached to $\mathcal{O}$ and determination of the basic relative invariants of these spaces. The above problem is equivalent to the problem of describing the closure of nilpotent orbits in the real Lie algebra $\mathfrak{so} (p,q)$ under the adjoint action of the identity component of the real orthogonal group $\mathrm{O}(p,q)$.

Keywords:orthogonal $ab$-diagrams, prehomogeneous vector spaces, relative invariants
Categories:17B20, 17B45, 22E47

3. CJM 2000 (vol 52 pp. 141)

Li, Chi-Kwong; Tam, Tin-Yau
Numerical Ranges Arising from Simple Lie Algebras
A unified formulation is given to various generalizations of the classical numerical range including the $c$-numerical range, congruence numerical range, $q$-numerical range and von Neumann range. Attention is given to those cases having connections with classical simple real Lie algebras. Convexity and inclusion relation involving those generalized numerical ranges are investigated. The underlying geometry is emphasized.

Keywords:numerical range, convexity, inclusion relation
Categories:15A60, 17B20

4. CJM 1998 (vol 50 pp. 1323)

Morales, Jorge
L'invariant de Hasse-Witt de la forme de Killing
Nous montrons que l'invariant de Hasse-Witt de la forme de Killing d'une alg{\`e}bre de Lie semi-simple $L$ s'exprime {\`a} l'aide de l'invariant de Tits de la repr{\'e}sentation irr{\'e}ductible de $L$ de poids dominant $\rho=\frac{1}{2}$ (somme des racines positives), et des invariants associ{\'e}s au groupe des sym{\'e}tries du diagramme de Dynkin de $L$.

Categories:11E04, 11E72, 17B10, 17B20, 11E88, 15A66

5. CJM 1998 (vol 50 pp. 225)

Benkart, Georgia
Derivations and invariant forms of Lie algebras graded by finite root systems
Lie algebras graded by finite reduced root systems have been classified up to isomorphism. In this paper we describe the derivation algebras of these Lie algebras and determine when they possess invariant bilinear forms. The results which we develop to do this are much more general and apply to Lie algebras that are completely reducible with respect to the adjoint action of a finite-dimensional subalgebra.

Categories:17B20, 17B70, 17B25

© Canadian Mathematical Society, 2014 :