CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 17 ( Nonassociative rings and algebras )

  Expand all        Collapse all Results 1 - 25 of 43

1. CJM Online first

Chen, Fulin; Gao, Yun; Jing, Naihuan; Tan, Shaobin
Twisted Vertex Operators and Unitary Lie Algebras
A representation of the central extension of the unitary Lie algebra coordinated with a skew Laurent polynomial ring is constructed using vertex operators over an integral $\mathbb Z_2$-lattice. The irreducible decomposition of the representation is explicitly computed and described. As a by-product, some fundamental representations of affine Kac-Moody Lie algebra of type $A_n^{(2)}$ are recovered by the new method.

Keywords:Lie algebra, vertex operator, representation theory
Categories:17B60, 17B69

2. CJM Online first

Barron, Tatyana; Kerner, Dmitry; Tvalavadze, Marina
On Varieties of Lie Algebras of Maximal Class
We study complex projective varieties that parametrize (finite-dimensional) filiform Lie algebras over ${\mathbb C}$, using equations derived by Millionshchikov. In the infinite-dimensional case we concentrate our attention on ${\mathbb N}$-graded Lie algebras of maximal class. As shown by A. Fialowski there are only three isomorphism types of $\mathbb{N}$-graded Lie algebras $L=\oplus^{\infty}_{i=1} L_i$ of maximal class generated by $L_1$ and $L_2$, $L=\langle L_1, L_2 \rangle$. Vergne described the structure of these algebras with the property $L=\langle L_1 \rangle$. In this paper we study those generated by the first and $q$-th components where $q\gt 2$, $L=\langle L_1, L_q \rangle$. Under some technical condition, there can only be one isomorphism type of such algebras. For $q=3$ we fully classify them. This gives a partial answer to a question posed by Millionshchikov.

Keywords:filiform Lie algebras, graded Lie algebras, projective varieties, topology, classification
Categories:17B70, 14F45

3. CJM 2013 (vol 65 pp. 1287)

Reihani, Kamran
$K$-theory of Furstenberg Transformation Group $C^*$-algebras
The paper studies the $K$-theoretic invariants of the crossed product $C^{*}$-algebras associated with an important family of homeomorphisms of the tori $\mathbb{T}^{n}$ called Furstenberg transformations. Using the Pimsner-Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products, whose corresponding $n\times n$ integer matrices are unipotent of maximal degree, always have the same rank $a_{n}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a combinatorial significance. For example, every $a_{2n+1}$ is just the number of ways that $0$ can be represented as a sum of integers between $-n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdős), a simple, explicit formula for the asymptotic behavior of the sequence $\{a_{n}\}$ is given. Finally, we describe the order structure of the $K_{0}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips.

Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism
Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20

4. CJM 2013 (vol 66 pp. 323)

Hohlweg, Christophe; Labbé, Jean-Philippe; Ripoll, Vivien
Asymptotical behaviour of roots of infinite Coxeter groups
Let $W$ be an infinite Coxeter group. We initiate the study of the set $E$ of limit points of ``normalized'' roots (representing the directions of the roots) of W. We show that $E$ is contained in the isotropic cone $Q$ of the bilinear form $B$ associated to a geometric representation, and illustrate this property with numerous examples and pictures in rank $3$ and $4$. We also define a natural geometric action of $W$ on $E$, and then we exhibit a countable subset of $E$, formed by limit points for the dihedral reflection subgroups of $W$. We explain how this subset is built from the intersection with $Q$ of the lines passing through two positive roots, and finally we establish that it is dense in $E$.

Keywords:Coxeter group, root system, roots, limit point, accumulation set
Categories:17B22, 20F55

5. CJM 2013 (vol 66 pp. 453)

Vaz, Pedro; Wagner, Emmanuel
A Remark on BMW algebra, $q$-Schur Algebras and Categorification
We prove that the 2-variable BMW algebra embeds into an algebra constructed from the HOMFLY-PT polynomial. We also prove that the $\mathfrak{so}_{2N}$-BMW algebra embeds in the $q$-Schur algebra of type $A$. We use these results to suggest a schema providing categorifications of the $\mathfrak{so}_{2N}$-BMW algebra.

Keywords:tangle algebras, BMW algebra, HOMFLY-PT Skein algebra, q-Schur algebra, categorification
Categories:57M27, 81R50, 17B37, 16W99

6. CJM 2013 (vol 65 pp. 783)

Garcés, Jorge J.; Peralta, Antonio M.
Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach triple systems as a concept which extends the notion of generalised homomorphism between Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively. We prove that every generalised triple homomorphism between JB$^*$-triples is automatically continuous. When particularised to C$^*$-algebras, we rediscover one of the main theorems established by B.E. Johnson. We shall also consider generalised triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$-module, proving that every generalised triple derivation from a JB$^*$-triple $E$ into itself or into $E^*$ is automatically continuous.

Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$-algebra, JB$^*$-triple
Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49

7. CJM 2012 (vol 65 pp. 82)

Félix, Yves; Halperin, Steve; Thomas, Jean-Claude
The Ranks of the Homotopy Groups of a Finite Dimensional Complex
Let $X$ be an $n$-dimensional, finite, simply connected CW complex and set $\alpha_X =\limsup_i \frac{\log\mbox{ rank}\, \pi_i(X)}{i}$. When $0\lt \alpha_X\lt \infty$, we give upper and lower bound for $ \sum_{i=k+2}^{k+n} \textrm{rank}\, \pi_i(X) $ for $k$ sufficiently large. We show also for any $r$ that $\alpha_X$ can be estimated from the integers rk$\,\pi_i(X)$, $i\leq nr$ with an error bound depending explicitly on $r$.

Keywords:homotopy groups, graded Lie algebra, exponential growth, LS category
Categories:55P35, 55P62, , , , 17B70

8. CJM 2012 (vol 64 pp. 721)

Achab, Dehbia; Faraut, Jacques
Analysis of the Brylinski-Kostant Model for Spherical Minimal Representations
We revisit with another view point the construction by R. Brylinski and B. Kostant of minimal representations of simple Lie groups. We start from a pair $(V,Q)$, where $V$ is a complex vector space and $Q$ a homogeneous polynomial of degree 4 on $V$. The manifold $\Xi $ is an orbit of a covering of ${\rm Conf}(V,Q)$, the conformal group of the pair $(V,Q)$, in a finite dimensional representation space. By a generalized Kantor-Koecher-Tits construction we obtain a complex simple Lie algebra $\mathfrak g$, and furthermore a real form ${\mathfrak g}_{\mathbb R}$. The connected and simply connected Lie group $G_{\mathbb R}$ with ${\rm Lie}(G_{\mathbb R})={\mathfrak g}_{\mathbb R}$ acts unitarily on a Hilbert space of holomorphic functions defined on the manifold $\Xi $.

Keywords:minimal representation, Kantor-Koecher-Tits construction, Jordan algebra, Bernstein identity, Meijer $G$-function
Categories:17C36, 22E46, 32M15, 33C80

9. CJM 2011 (vol 63 pp. 1083)

Kaletha, Tasho
Decomposition of Splitting Invariants in Split Real Groups
For a maximal torus in a quasi-split semi-simple simply-connected group over a local field of characteristic $0$, Langlands and Shelstad constructed a cohomological invariant called the splitting invariant, which is an important component of their endoscopic transfer factors. We study this invariant in the case of a split real group and prove a decomposition theorem which expresses this invariant for a general torus as a product of the corresponding invariants for simple tori. We also show how this reduction formula allows for the comparison of splitting invariants between different tori in the given real group.

Keywords:endoscopy, real lie group, splitting invariant, transfer factor
Categories:11F70, 22E47, 11S37, 11F72, 17B22

10. CJM 2009 (vol 62 pp. 382)

Lü, Rencai; Zhao, Kaiming
Verma Modules over Quantum Torus Lie Algebras
Representations of various one-dimensional central extensions of quantum tori (called quantum torus Lie algebras) were studied by several authors. Now we define a central extension of quantum tori so that all known representations can be regarded as representations of the new quantum torus Lie algebras $\mathfrak{L}_q$. The center of $\mathfrak{L}_q$ now is generally infinite dimensional. In this paper, $\mathbb{Z}$-graded Verma modules $\widetilde{V}(\varphi)$ over $\mathfrak{L}_q$ and their corresponding irreducible highest weight modules $V(\varphi)$ are defined for some linear functions $\varphi$. Necessary and sufficient conditions for $V(\varphi)$ to have all finite dimensional weight spaces are given. Also necessary and sufficient conditions for Verma modules $\widetilde{V}(\varphi)$ to be irreducible are obtained.

Categories:17B10, 17B65, 17B68

11. CJM 2008 (vol 60 pp. 892)

Neeb, Karl-Hermann; Wagemann, Friedrich
The Second Cohomology of Current Algebras of General Lie Algebras
Let $A$ be a unital commutative associative algebra over a field of characteristic zero, $\k$ a Lie algebra, and $\zf$ a vector space, considered as a trivial module of the Lie algebra $\gf := A \otimes \kf$. In this paper, we give a description of the cohomology space $H^2(\gf,\zf)$ in terms of easily accessible data associated with $A$ and $\kf$. We also discuss the topological situation, where $A$ and $\kf$ are locally convex algebras.

Keywords:current algebra, Lie algebra cohomology, Lie algebra homology, invariant bilinear form, central extension
Categories:17B56, 17B65

12. CJM 2008 (vol 60 pp. 88)

Diwadkar, Jyotsna Mainkar
Nilpotent Conjugacy Classes in $p$-adic Lie Algebras: The Odd Orthogonal Case
We will study the following question: Are nilpotent conjugacy classes of reductive Lie algebras over $p$-adic fields definable? By definable, we mean definable by a formula in Pas's language. In this language, there are no field extensions and no uniformisers. Using Waldspurger's parametrization, we answer in the affirmative in the case of special orthogonal Lie algebras $\mathfrak{so}(n)$ for $n$ odd, over $p$-adic fields.

Categories:17B10, 03C60

13. CJM 2007 (vol 59 pp. 1260)

Deng, Bangming; Du, Jie; Xiao, Jie
Generic Extensions and Canonical Bases for Cyclic Quivers
We use the monomial basis theory developed by Deng and Du to present an elementary algebraic construction of the canonical bases for both the Ringel--Hall algebra of a cyclic quiver and the positive part $\bU^+$ of the quantum affine $\frak{sl}_n$. This construction relies on analysis of quiver representations and the introduction of a new integral PBW-like basis for the Lusztig $\mathbb Z[v,v^{-1}]$-form of~$\bU^+$.

Categories:17B37, 16G20

14. CJM 2007 (vol 59 pp. 712)

Billig, Yuly
Jet Modules
In this paper we classify indecomposable modules for the Lie algebra of vector fields on a torus that admit a compatible action of the algebra of functions. An important family of such modules is given by spaces of jets of tensor fields.

Categories:17B66, 58A20

15. CJM 2007 (vol 59 pp. 696)

Bangoura, Momo
Algèbres de Lie d'homotopie associées à une proto-bigèbre de Lie
On associe \`a toute structure de proto-big\`ebre de Lie sur un espace vectoriel $F$ de dimension finie des structures d'alg\`ebre de Lie d'homotopie d\'efinies respectivement sur la suspension de l'alg\`ebre ext\'erieure de $F$ et celle de son dual $F^*$. Dans ces alg\`ebres, tous les crochets $n$-aires sont nuls pour $n \geq 4$ du fait qu'ils proviennent d'une structure de proto-big\`ebre de Lie. Plus g\'en\'eralement, on associe \`a un \'el\'ement de degr\'e impair de l'alg\`ebre ext\'erieure de la somme directe de $F$ et $F^*$, une collection d'applications multilin\'eaires antisym\'etriques sur l'alg\`ebre ext\'erieure de $F$ (resp.\ $F^*$), qui v\'erifient les identit\'es de Jacobi g\'en\'eralis\'ees, d\'efinissant les alg\`ebres de Lie d'homotopie, si l'\'el\'ement donn\'e est de carr\'e nul pour le grand crochet de l'alg\`ebre ext\'erieure de la somme directe de $F$ et de~$F^*$. To any proto-Lie algebra structure on a finite-dimensional vector space~$F$, we associate homotopy Lie algebra structures defined on the suspension of the exterior algebra of $F$ and that of its dual $F^*$, respectively. In these algebras, all $n$-ary brackets for $n \geq 4$ vanish because the brackets are defined by the proto-Lie algebra structure. More generally, to any element of odd degree in the exterior algebra of the direct sum of $F$ and $F^*$, we associate a set of multilinear skew-symmetric mappings on the suspension of the exterior algebra of $F$ (resp.\ $F^*$), which satisfy the generalized Jacobi identities, defining the homotopy Lie algebras, if the given element is of square zero with respect to the big bracket of the exterior algebra of the direct sum of $F$ and~$F^*$.

Keywords:algèbre de Lie d'homotopie, bigèbre de Lie, quasi-bigèbre de Lie, proto-bigèbre de Lie, crochet dérivé, jacobiateur
Categories:17B70, 17A30

16. CJM 2006 (vol 58 pp. 1291)

Weimar-Woods, Evelyn
The General Structure of $G$-Graded Contractions of Lie Algebras I. The Classification
We give the general structure of complex (resp., real) $G$-graded contractions of Lie algebras where $G$ is an arbitrary finite Abelian group. For this purpose, we introduce a number of concepts, such as pseudobasis, higher-order identities, and sign invariants. We characterize the equivalence classes of $G$-graded contractions by showing that our set of invariants (support, higher-order identities, and sign invariants) is complete, which yields a classification.

Keywords:Lie algebras, graded contractions
Categories:17B05, 17B70

17. CJM 2006 (vol 58 pp. 225)

Azam, Saeid
Generalized Reductive Lie Algebras: Connections With Extended Affine Lie Algebras and Lie Tori
We investigate a class of Lie algebras which we call {\it generalized reductive Lie algebras}. These are generalizations of semi-simple, reductive, and affine Kac--Moody Lie algebras. A generalized reductive Lie algebra which has an irreducible root system is said to be {\it irreducible\/} and we note that this class of algebras has been under intensive investigation in recent years. They have also been called {\it extended affine Lie algebras}. The larger class of generalized reductive Lie algebras has not been so intensively investigated. We study them in this paper and note that one way they arise is as fixed point subalgebras of finite order automorphisms. We show that the core modulo the center of a generalized reductive Lie algebra is a direct sum of centerless Lie tori. Therefore one can use the results known about the classification of centerless Lie tori to classify the cores modulo centers of generalized reductive Lie algebras.

Categories:17B65, 17B67, 17B40

18. CJM 2006 (vol 58 pp. 3)

Ben Saïd, Salem
The Functional Equation of Zeta Distributions Associated With Non-Euclidean Jordan Algebras
This paper is devoted to the study of certain zeta distributions associated with simple non-Euclidean Jordan algebras. An explicit form of the corresponding functional equation and Bernstein-type identities is obtained.

Keywords:Zeta distributions, functional equations, Bernstein polynomials, non-Euclidean Jordan algebras
Categories:11M41, 17C20, 11S90

19. CJM 2004 (vol 56 pp. 871)

Schocker, Manfred
Lie Elements and Knuth Relations
A coplactic class in the symmetric group $\Sym_n$ consists of all permutations in $\Sym_n$ with a given Schensted $Q$-symbol, and may be described in terms of local relations introduced by Knuth. Any Lie element in the group algebra of $\Sym_n$ which is constant on coplactic classes is already constant on descent classes. As a consequence, the intersection of the Lie convolution algebra introduced by Patras and Reutenauer and the coplactic algebra introduced by Poirier and Reutenauer is the direct sum of all Solomon descent algebras.

Keywords:symmetric group, descent set, coplactic relation, Hopf algebra,, convolution product
Categories:17B01, 05E10, 20C30, 16W30

20. CJM 2004 (vol 56 pp. 293)

Khomenko, Oleksandr; Mazorchuk, Volodymyr
Structure of modules induced from simple modules with minimal annihilator
We study the structure of generalized Verma modules over a semi-simple complex finite-dimensional Lie algebra, which are induced from simple modules over a parabolic subalgebra. We consider the case when the annihilator of the starting simple module is a minimal primitive ideal if we restrict this module to the Levi factor of the parabolic subalgebra. We show that these modules correspond to proper standard modules in some parabolic generalization of the Bernstein-Gelfand-Gelfand category $\Oo$ and prove that the blocks of this parabolic category are equivalent to certain blocks of the category of Harish-Chandra bimodules. From this we derive, in particular, an irreducibility criterion for generalized Verma modules. We also compute the composition multiplicities of those simple subquotients, which correspond to the induction from simple modules whose annihilators are minimal primitive ideals.

Keywords:parabolic induction, generalized Verma module, simple module, Ha\-rish-\-Chand\-ra bimodule, equivalent categories
Categories:17B10, 22E47

21. CJM 2003 (vol 55 pp. 1155)

Đoković, Dragomir Ž.; Litvinov, Michael
The Closure Ordering of Nilpotent Orbits of the Complex Symmetric Pair $(\SO_{p+q},\SO_p\times\SO_q)$
The main problem that is solved in this paper has the following simple formulation (which is not used in its solution). The group $K = \mathrm{O}_p ({\bf C}) \times \mathrm{O}_q ({\bf C})$ acts on the space $M_{p,q}$ of $p\times q$ complex matrices by $(a,b) \cdot x = axb^{-1}$, and so does its identity component $K^0 = \SO_p ({\bf C}) \times \SO_q ({\bf C})$. A $K$-orbit (or $K^0$-orbit) in $M_{p,q}$ is said to be nilpotent if its closure contains the zero matrix. The closure, $\overline{\mathcal{O}}$, of a nilpotent $K$-orbit (resp.\ $K^0$-orbit) ${\mathcal{O}}$ in $M_{p,q}$ is a union of ${\mathcal{O}}$ and some nilpotent $K$-orbits (resp.\ $K^0$-orbits) of smaller dimensions. The description of the closure of nilpotent $K$-orbits has been known for some time, but not so for the nilpotent $K^0$-orbits. A conjecture describing the closure of nilpotent $K^0$-orbits was proposed in \cite{DLS} and verified when $\min(p,q) \le 7$. In this paper we prove the conjecture. The proof is based on a study of two prehomogeneous vector spaces attached to $\mathcal{O}$ and determination of the basic relative invariants of these spaces. The above problem is equivalent to the problem of describing the closure of nilpotent orbits in the real Lie algebra $\mathfrak{so} (p,q)$ under the adjoint action of the identity component of the real orthogonal group $\mathrm{O}(p,q)$.

Keywords:orthogonal $ab$-diagrams, prehomogeneous vector spaces, relative invariants
Categories:17B20, 17B45, 22E47

22. CJM 2003 (vol 55 pp. 856)

Su, Yucai
Poisson Brackets and Structure of Nongraded Hamiltonian Lie Algebras Related to Locally-Finite Derivations
Xu introduced a class of nongraded Hamiltonian Lie algebras. These Lie algebras have a Poisson bracket structure. In this paper, the isomorphism classes of these Lie algebras are determined by employing a ``sandwich'' method and by studying some features of these Lie algebras. It is obtained that two Hamiltonian Lie algebras are isomorphic if and only if their corresponding Poisson algebras are isomorphic. Furthermore, the derivation algebras and the second cohomology groups are determined.

Categories:17B40, 17B65

23. CJM 2003 (vol 55 pp. 766)

Kerler, Thomas
Homology TQFT's and the Alexander--Reidemeister Invariant of 3-Manifolds via Hopf Algebras and Skein Theory
We develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of a 3-manifold from a surgery presentation employing the methods used in the construction of quantum invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence between the topological quantum field theory constructed by Frohman and Nicas using the homology of $U(1)$-representation varieties on the one side and the combinatorially constructed Hennings TQFT based on the quasitriangular Hopf algebra $\mathcal{N} = \mathbb{Z}/2 \ltimes \bigwedge^* \mathbb{R}^2$ on the other side. We find that both TQFT's are $\SL (2,\mathbb{R})$-equivariant functors and, as such, are isomorphic. The $\SL (2,\mathbb{R})$-action in the Hennings construction comes from the natural action on $\mathcal{N}$ and in the case of the Frohman--Nicas theory from the Hard--Lefschetz decomposition of the $U(1)$-moduli spaces given that they are naturally K\"ahler. The irreducible components of this TQFT, corresponding to simple representations of $\SL(2,\mathbb{Z})$ and $\Sp(2g,\mathbb{Z})$, thus yield a large family of homological TQFT's by taking sums and products. We give several examples of TQFT's and invariants that appear to fit into this family, such as Milnor and Reidemeister Torsion, Seiberg--Witten theories, Casson type theories for homology circles {\it \`a la} Donaldson, higher rank gauge theories following Frohman and Nicas, and the $\mathbb{Z}/p\mathbb{Z}$ reductions of Reshetikhin--Turaev theories over the cyclotomic integers $\mathbb{Z} [\zeta_p]$. We also conjecture that the Hennings TQFT for quantum-$\mathfrak{sl}_2$ is the product of the Reshetikhin--Turaev TQFT and such a homological TQFT.

Categories:57R56, 14D20, 16W30, 17B37, 18D35, 57M27

24. CJM 2002 (vol 54 pp. 595)

Nahlus, Nazih
Lie Algebras of Pro-Affine Algebraic Groups
We extend the basic theory of Lie algebras of affine algebraic groups to the case of pro-affine algebraic groups over an algebraically closed field $K$ of characteristic 0. However, some modifications are needed in some extensions. So we introduce the pro-discrete topology on the Lie algebra $\mathcal{L}(G)$ of the pro-affine algebraic group $G$ over $K$, which is discrete in the finite-dimensional case and linearly compact in general. As an example, if $L$ is any sub Lie algebra of $\mathcal{L}(G)$, we show that the closure of $[L,L]$ in $\mathcal{L}(G)$ is algebraic in $\mathcal{L}(G)$. We also discuss the Hopf algebra of representative functions $H(L)$ of a residually finite dimensional Lie algebra $L$. As an example, we show that if $L$ is a sub Lie algebra of $\mathcal{L}(G)$ and $G$ is connected, then the canonical Hopf algebra morphism from $K[G]$ into $H(L)$ is injective if and only if $L$ is algebraically dense in $\mathcal{L}(G)$.

Categories:14L, 16W, 17B45

25. CJM 2001 (vol 53 pp. 225)

Britten, D. J.; Lemire, F. W.
Tensor Product Realizations of Simple Torsion Free Modules
Let $\calG$ be a finite dimensional simple Lie algebra over the complex numbers $C$. Fernando reduced the classification of infinite dimensional simple $\calG$-modules with a finite dimensional weight space to determining the simple torsion free $\calG$-modules for $\calG$ of type $A$ or $C$. These modules were determined by Mathieu and using his work we provide a more elementary construction realizing each one as a submodule of an easily constructed tensor product module.

Category:17B10
Page
   1 2    

© Canadian Mathematical Society, 2014 : https://cms.math.ca/