CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 15A42 ( Inequalities involving eigenvalues and eigenvectors )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2009 (vol 62 pp. 109)

Li, Chi-Kwong; Poon, Yiu-Tung
Sum of Hermitian Matrices with Given Eigenvalues: Inertia, Rank, and Multiple Eigenvalues
Let $A$ and $B$ be $n\times n$ complex Hermitian (or real symmetric) matrices with eigenvalues $a_1 \ge \dots \ge a_n$ and $b_1 \ge \dots \ge b_n$. All possible inertia values, ranks, and multiple eigenvalues of $A + B$ are determined. Extension of the results to the sum of $k$ matrices with $k > 2$ and connections of the results to other subjects such as algebraic combinatorics are also discussed.

Keywords:complex Hermitian matrices, real symmetric matrices, inertia, rank, multiple eigenvalues
Categories:15A42, 15A57

2. CJM 2003 (vol 55 pp. 91)

Choi, Man-Duen; Li, Chi-Kwong; Poon, Yiu-Tung
Some Convexity Features Associated with Unitary Orbits
Let $\mathcal{H}_n$ be the real linear space of $n\times n$ complex Hermitian matrices. The unitary (similarity) orbit $\mathcal{U} (C)$ of $C \in \mathcal{H}_n$ is the collection of all matrices unitarily similar to $C$. We characterize those $C \in \mathcal{H}_n$ such that every matrix in the convex hull of $\mathcal{U}(C)$ can be written as the average of two matrices in $\mathcal{U}(C)$. The result is used to study spectral properties of submatrices of matrices in $\mathcal{U}(C)$, the convexity of images of $\mathcal{U} (C)$ under linear transformations, and some related questions concerning the joint $C$-numerical range of Hermitian matrices. Analogous results on real symmetric matrices are also discussed.

Keywords:Hermitian matrix, unitary orbit, eigenvalue, joint numerical range
Categories:15A60, 15A42

3. CJM 2002 (vol 54 pp. 571)

Li, Chi-Kwong; Poon, Yiu-Tung
Diagonals and Partial Diagonals of Sum of Matrices
Given a matrix $A$, let $\mathcal{O}(A)$ denote the orbit of $A$ under a certain group action such as \begin{enumerate}[(4)] \item[(1)] $U(m) \otimes U(n)$ acting on $m \times n$ complex matrices $A$ by $(U,V)*A = UAV^t$, \item[(2)] $O(m) \otimes O(n)$ or $\SO(m) \otimes \SO(n)$ acting on $m \times n$ real matrices $A$ by $(U,V)*A = UAV^t$, \item[(3)] $U(n)$ acting on $n \times n$ complex symmetric or skew-symmetric matrices $A$ by $U*A = UAU^t$, \item[(4)] $O(n)$ or $\SO(n)$ acting on $n \times n$ real symmetric or skew-symmetric matrices $A$ by $U*A = UAU^t$. \end{enumerate} Denote by $$ \mathcal{O}(A_1,\dots,A_k) = \{X_1 + \cdots + X_k : X_i \in \mathcal{O}(A_i), i = 1,\dots,k\} $$ the joint orbit of the matrices $A_1,\dots,A_k$. We study the set of diagonals or partial diagonals of matrices in $\mathcal{O}(A_1,\dots,A_k)$, {\it i.e.}, the set of vectors $(d_1,\dots,d_r)$ whose entries lie in the $(1,j_1),\dots,(r,j_r)$ positions of a matrix in $\mathcal{O}(A_1, \dots,A_k)$ for some distinct column indices $j_1,\dots,j_r$. In many cases, complete description of these sets is given in terms of the inequalities involving the singular values of $A_1,\dots,A_k$. We also characterize those extreme matrices for which the equality cases hold. Furthermore, some convexity properties of the joint orbits are considered. These extend many classical results on matrix inequalities, and answer some questions by Miranda. Related results on the joint orbit $\mathcal{O}(A_1,\dots,A_k)$ of complex Hermitian matrices under the action of unitary similarities are also discussed.

Keywords:orbit, group actions, unitary, orthogonal, Hermitian, (skew-)symmetric matrices, diagonal, singular values
Categories:15A42, 15A18

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/