Expand all Collapse all | Results 1 - 3 of 3 |
1. CJM 2007 (vol 59 pp. 638)
Distance from Idempotents to Nilpotents We give bounds on the distance from a non-zero idempotent to the
set of nilpotents in the set of $n\times n$ matrices in terms of
the norm of the idempotent. We construct explicit idempotents and
nilpotents which achieve these distances, and determine exact
distances in some special cases.
Keywords:operator, matrix, nilpotent, idempotent, projection Categories:47A15, 47D03, 15A30 |
2. CJM 2000 (vol 52 pp. 197)
Sublinearity and Other Spectral Conditions on a Semigroup Subadditivity, sublinearity, submultiplicativity, and other
conditions are considered for spectra of pairs of operators on a
Hilbert space. Sublinearity, for example, is a weakening of the
well-known property~$L$ and means $\sigma(A+\lambda B) \subseteq
\sigma(A) + \lambda \sigma(B)$ for all scalars $\lambda$. The
effect of these conditions is examined on commutativity,
reducibility, and triangularizability of multiplicative semigroups
of operators. A sample result is that sublinearity of spectra
implies simultaneous triangularizability for a semigroup of compact
operators.
Categories:47A15, 47D03, 15A30, 20A20, 47A10, 47B10 |
3. CJM 1998 (vol 50 pp. 929)
Decomposition varieties in semisimple Lie algebras The notion of decompositon class in a semisimple Lie algebra is a
common generalization of nilpotent orbits and the set of
regular semisimple elements. We prove that the closure of a
decomposition class has many properties in common with nilpotent
varieties, \eg, its normalization has rational singularities.
The famous Grothendieck simultaneous resolution is related to the
decomposition class of regular semisimple elements. We study the
properties of the analogous commutative diagrams associated to
an arbitrary decomposition class.
Categories:14L30, 14M17, 15A30, 17B45 |