CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 15 ( Linear and multilinear algebra; matrix theory )

  Expand all        Collapse all Results 1 - 25 of 30

1. CJM 2013 (vol 65 pp. 1287)

Reihani, Kamran
$K$-theory of Furstenberg Transformation Group $C^*$-algebras
The paper studies the $K$-theoretic invariants of the crossed product $C^{*}$-algebras associated with an important family of homeomorphisms of the tori $\mathbb{T}^{n}$ called Furstenberg transformations. Using the Pimsner-Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products, whose corresponding $n\times n$ integer matrices are unipotent of maximal degree, always have the same rank $a_{n}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a combinatorial significance. For example, every $a_{2n+1}$ is just the number of ways that $0$ can be represented as a sum of integers between $-n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdős), a simple, explicit formula for the asymptotic behavior of the sequence $\{a_{n}\}$ is given. Finally, we describe the order structure of the $K_{0}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips.

Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism
Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20

2. CJM 2012 (vol 65 pp. 1020)

Goulden, I. P.; Guay-Paquet, Mathieu; Novak, Jonathan
Monotone Hurwitz Numbers in Genus Zero
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys-Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.

Keywords:Hurwitz numbers, matrix models, enumerative geometry
Categories:05A15, 14E20, 15B52

3. CJM 2011 (vol 63 pp. 1364)

Meinrenken, Eckhard
The Cubic Dirac Operator for Infinite-Dimensonal Lie Algebras
Let $\mathfrak{g}=\bigoplus_{i\in\mathbb{Z}} \mathfrak{g}_i$ be an infinite-dimensional graded Lie algebra, with $\dim\mathfrak{g}_i<\infty$, equipped with a non-degenerate symmetric bilinear form $B$ of degree $0$. The quantum Weil algebra $\widehat{\mathcal{W}}\mathfrak{g}$ is a completion of the tensor product of the enveloping and Clifford algebras of $\mathfrak{g}$. Provided that the Kac-Peterson class of $\mathfrak{g}$ vanishes, one can construct a cubic Dirac operator $\mathcal{D}\in\widehat{\mathcal{W}}(\mathfrak{g})$, whose square is a quadratic Casimir element. We show that this condition holds for symmetrizable Kac-Moody algebras. Extending Kostant's arguments, one obtains generalized Weyl-Kac character formulas for suitable ``equal rank'' Lie subalgebras of Kac-Moody algebras. These extend the formulas of G. Landweber for affine Lie algebras.

Categories:22E65, 15A66

4. CJM 2010 (vol 63 pp. 413)

Konvalinka, Matjaž; Skandera, Mark
Generating Functions for Hecke Algebra Characters
Certain polynomials in $n^2$ variables that serve as generating functions for symmetric group characters are sometimes called ($S_n$) character immanants. We point out a close connection between the identities of Littlewood--Merris--Watkins and Goulden--Jackson, which relate $S_n$ character immanants to the determinant, the permanent and MacMahon's Master Theorem. From these results we obtain a generalization of Muir's identity. Working with the quantum polynomial ring and the Hecke algebra $H_n(q)$, we define quantum immanants that are generating functions for Hecke algebra characters. We then prove quantum analogs of the Littlewood--Merris--Watkins identities and selected Goulden--Jackson identities that relate $H_n(q)$ character immanants to the quantum determinant, quantum permanent, and quantum Master Theorem of Garoufalidis--L\^e--Zeilberger. We also obtain a generalization of Zhang's quantization of Muir's identity.

Keywords:determinant, permanent, immanant, Hecke algebra character, quantum polynomial ring
Categories:15A15, 20C08, 81R50

5. CJM 2010 (vol 63 pp. 3)

Banica, T.; Belinschi, S. T.; Capitaine, M.; Collins, B.
Free Bessel Laws
We introduce and study a remarkable family of real probability measures $\pi_{st}$ that we call free Bessel laws. These are related to the free Poisson law $\pi$ via the formulae $\pi_{s1}=\pi^{\boxtimes s}$ and ${\pi_{1t}=\pi^{\boxplus t}}$. Our study includes definition and basic properties, analytic aspects (supports, atoms, densities), combinatorial aspects (functional transforms, moments, partitions), and a discussion of the relation with random matrices and quantum groups.

Keywords:Poisson law, Bessel function, Wishart matrix, quantum group
Categories:46L54, 15A52, 16W30

6. CJM 2010 (vol 62 pp. 758)

Dolinar, Gregor; Kuzma, Bojan
General Preservers of Quasi-Commutativity
Let ${ M}_n$ be the algebra of all $n \times n$ matrices over $\mathbb{C}$. We say that $A, B \in { M}_n$ quasi-commute if there exists a nonzero $\xi \in \mathbb{C}$ such that $AB = \xi BA$. In the paper we classify bijective not necessarily linear maps $\Phi \colon M_n \to M_n$ which preserve quasi-commutativity in both directions.

Keywords:general preservers, matrix algebra, quasi-commutativity
Categories:15A04, 15A27, 06A99

7. CJM 2009 (vol 62 pp. 109)

Li, Chi-Kwong; Poon, Yiu-Tung
Sum of Hermitian Matrices with Given Eigenvalues: Inertia, Rank, and Multiple Eigenvalues
Let $A$ and $B$ be $n\times n$ complex Hermitian (or real symmetric) matrices with eigenvalues $a_1 \ge \dots \ge a_n$ and $b_1 \ge \dots \ge b_n$. All possible inertia values, ranks, and multiple eigenvalues of $A + B$ are determined. Extension of the results to the sum of $k$ matrices with $k > 2$ and connections of the results to other subjects such as algebraic combinatorics are also discussed.

Keywords:complex Hermitian matrices, real symmetric matrices, inertia, rank, multiple eigenvalues
Categories:15A42, 15A57

8. CJM 2008 (vol 60 pp. 1050)

Huang, Wen-ling; Semrl, Peter \v
Adjacency Preserving Maps on Hermitian Matrices
Hua's fundamental theorem of the geometry of hermitian matrices characterizes bijective maps on the space of all $n\times n$ hermitian matrices preserving adjacency in both directions. The problem of possible improvements has been open for a while. There are three natural problems here. Do we need the bijectivity assumption? Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only? Can we obtain such a characterization for maps acting between the spaces of hermitian matrices of different sizes? We answer all three questions for the complex hermitian matrices, thus obtaining the optimal structural result for adjacency preserving maps on hermitian matrices over the complex field.

Keywords:rank, adjacency preserving map, hermitian matrix, geometry of matrices
Categories:15A03, 15A04, 15A57, 15A99

9. CJM 2008 (vol 60 pp. 1149)

Petersen, Kathleen L.; Sinclair, Christopher D.
Conjugate Reciprocal Polynomials with All Roots on the Unit Circle
We study the geometry, topology and Lebesgue measure of the set of monic conjugate reciprocal polynomials of fixed degree with all roots on the unit circle. The set of such polynomials of degree $N$ is naturally associated to a subset of $\R^{N-1}$. We calculate the volume of this set, prove the set is homeomorphic to the $N-1$ ball and that its isometry group is isomorphic to the dihedral group of order $2N$.

Categories:11C08, 28A75, 15A52, 54H10, 58D19

10. CJM 2008 (vol 60 pp. 923)

Okoh, F.; Zorzitto, F.
Endomorphisms of Kronecker Modules Regulated by Quadratic Algebra Extensions of a Function Field
The Kronecker modules $\mathbb{V}(m,h,\alpha)$, where $m$ is a positive integer, $h$ is a height function, and $\alpha$ is a $K$-linear functional on the space $K(X)$ of rational functions in one variable $X$ over an algebraically closed field $K$, are models for the family of all torsion-free rank-2 modules that are extensions of finite-dimensional rank-1 modules. Every such module comes with a regulating polynomial $f$ in $K(X)[Y]$. When the endomorphism algebra of $\mathbb{V}(m,h,\alpha)$ is commutative and non-trivial, the regulator $f$ must be quadratic in $Y$. If $f$ has one repeated root in $K(X)$, the endomorphism algebra is the trivial extension $K\ltimes S$ for some vector space $S$. If $f$ has distinct roots in $K(X)$, then the endomorphisms form a structure that we call a bridge. These include the coordinate rings of some curves. Regardless of the number of roots in the regulator, those $\End\mathbb{V}(m,h,\alpha)$ that are domains have zero radical. In addition, each semi-local $\End\mathbb{V}(m,h,\alpha)$ must be either a trivial extension $K\ltimes S$ or the product $K\times K$.

Categories:16S50, 15A27

11. CJM 2008 (vol 60 pp. 520)

Chen, Chang-Pao; Huang, Hao-Wei; Shen, Chun-Yen
Matrices Whose Norms Are Determined by Their Actions on Decreasing Sequences
Let $A=(a_{j,k})_{j,k \ge 1}$ be a non-negative matrix. In this paper, we characterize those $A$ for which $\|A\|_{E, F}$ are determined by their actions on decreasing sequences, where $E$ and $F$ are suitable normed Riesz spaces of sequences. In particular, our results can apply to the following spaces: $\ell_p$, $d(w,p)$, and $\ell_p(w)$. The results established here generalize ones given by Bennett; Chen, Luor, and Ou; Jameson; and Jameson and Lashkaripour.

Keywords:norms of matrices, normed Riesz spaces, weighted mean matrices, Nörlund mean matrices, summability matrices, matrices with row decreasing
Categories:15A60, 40G05, 47A30, 47B37, 46B42

12. CJM 2007 (vol 59 pp. 1284)

Fukshansky, Lenny
On Effective Witt Decomposition and the Cartan--Dieudonn{é Theorem
Let $K$ be a number field, and let $F$ be a symmetric bilinear form in $2N$ variables over $K$. Let $Z$ be a subspace of $K^N$. A classical theorem of Witt states that the bilinear space $(Z,F)$ can be decomposed into an orthogonal sum of hyperbolic planes and singular and anisotropic components. We prove the existence of such a decomposition of small height, where all bounds on height are explicit in terms of heights of $F$ and $Z$. We also prove a special version of Siegel's lemma for a bilinear space, which provides a small-height orthogonal decomposition into one-dimensional subspaces. Finally, we prove an effective version of the Cartan--Dieudonn{\'e} theorem. Namely, we show that every isometry $\sigma$ of a regular bilinear space $(Z,F)$ can be represented as a product of reflections of bounded heights with an explicit bound on heights in terms of heights of $F$, $Z$, and $\sigma$.

Keywords:quadratic form, heights
Categories:11E12, 15A63, 11G50

13. CJM 2007 (vol 59 pp. 638)

MacDonald, Gordon W.
Distance from Idempotents to Nilpotents
We give bounds on the distance from a non-zero idempotent to the set of nilpotents in the set of $n\times n$ matrices in terms of the norm of the idempotent. We construct explicit idempotents and nilpotents which achieve these distances, and determine exact distances in some special cases.

Keywords:operator, matrix, nilpotent, idempotent, projection
Categories:47A15, 47D03, 15A30

14. CJM 2007 (vol 59 pp. 488)

Bernardi, A.; Catalisano, M. V.; Gimigliano, A.; Idà, M.
Osculating Varieties of Veronese Varieties and Their Higher Secant Varieties
We consider the $k$-osculating varieties $O_{k,n.d}$ to the (Veronese) $d$-uple embeddings of $\PP^n$. We study the dimension of their higher secant varieties via inverse systems (apolarity). By associating certain 0-dimensional schemes $Y\subset \PP^n$ to $O^s_{k,n,d}$ and by studying their Hilbert functions, we are able, in several cases, to determine whether those secant varieties are defective or not.

Categories:14N15, 15A69

15. CJM 2007 (vol 59 pp. 186)

Okoh, F.; Zorzitto, F.
Endomorphism Algebras of Kronecker Modules Regulated by Quadratic Function Fields
Purely simple Kronecker modules ${\mathcal M}$, built from an algebraically closed field $K$, arise from a triplet $(m,h,\alpha)$ where $m$ is a positive integer, $h\colon\ktil\ar \{\infty,0,1,2,3,\dots\}$ is a height function, and $\alpha$ is a $K$-linear functional on the space $\krx$ of rational functions in one variable $X$. Every pair $(h,\alpha)$ comes with a polynomial $f$ in $K(X)[Y]$ called the regulator. When the module ${\mathcal M}$ admits non-trivial endomorphisms, $f$ must be linear or quadratic in $Y$. In that case ${\mathcal M}$ is purely simple if and only if $f$ is an irreducible quadratic. Then the $K$-algebra $\edm\cm$ embeds in the quadratic function field $\krx[Y]/(f)$. For some height functions $h$ of infinite support $I$, the search for a functional $\alpha$ for which $(h,\alpha)$ has regulator $0$ comes down to having functions $\eta\colon I\ar K$ such that no planar curve intersects the graph of $\eta$ on a cofinite subset. If $K$ has characterictic not $2$, and the triplet $(m,h,\alpha)$ gives a purely-simple Kronecker module ${\mathcal M}$ having non-trivial endomorphisms, then $h$ attains the value $\infty$ at least once on $\ktil$ and $h$ is finite-valued at least twice on $\ktil$. Conversely all these $h$ form part of such triplets. The proof of this result hinges on the fact that a rational function $r$ is a perfect square in $\krx$ if and only if $r$ is a perfect square in the completions of $\krx$ with respect to all of its valuations.

Keywords:Purely simple Kronecker module, regulating polynomial, Laurent expansions, endomorphism algebra
Categories:16S50, 15A27

16. CJM 2005 (vol 57 pp. 82)

Fallat, Shaun M.; Gekhtman, Michael I.
Jordan Structures of Totally Nonnegative Matrices
An $n \times n$ matrix is said to be totally nonnegative if every minor of $A$ is nonnegative. In this paper we completely characterize all possible Jordan canonical forms of irreducible totally nonnegative matrices. Our approach is mostly combinatorial and is based on the study of weighted planar diagrams associated with totally nonnegative matrices.

Keywords:totally nonnegative matrices, planar diagrams,, principal rank, Jordan canonical form
Categories:15A21, 15A48, 05C38

17. CJM 2004 (vol 56 pp. 776)

Lim, Yongdo
Best Approximation in Riemannian Geodesic Submanifolds of Positive Definite Matrices
We explicitly describe the best approximation in geodesic submanifolds of positive definite matrices obtained from involutive congruence transformations on the Cartan-Hadamard manifold ${\mathrm{Sym}}(n,{\Bbb R})^{++}$ of positive definite matrices. An explicit calculation for the minimal distance function from the geodesic submanifold ${\mathrm{Sym}}(p,{\mathbb R})^{++}\times {\mathrm{Sym}}(q,{\mathbb R})^{++}$ block diagonally embedded in ${\mathrm{Sym}}(n,{\mathbb R})^{++}$ is given in terms of metric and spectral geometric means, Cayley transform, and Schur complements of positive definite matrices when $p\leq 2$ or $q\leq 2.$

Keywords:Matrix approximation, positive, definite matrix, geodesic submanifold, Cartan-Hadamard manifold,, best approximation, minimal distance function, global tubular, neighborhood theorem, Schur complement, metric and spectral, geometric mean, Cayley transform
Categories:15A48, 49R50, 15A18, 53C3

18. CJM 2004 (vol 56 pp. 134)

Li, Chi-Kwong; Sourour, Ahmed Ramzi
Linear Operators on Matrix Algebras that Preserve the Numerical Range, Numerical Radius or the States
Every norm $\nu$ on $\mathbf{C}^n$ induces two norm numerical ranges on the algebra $M_n$ of all $n\times n$ complex matrices, the spatial numerical range $$ W(A)= \{x^*Ay : x, y \in \mathbf{C}^n,\nu^D(x) = \nu(y) = x^*y = 1\}, $$ where $\nu^D$ is the norm dual to $\nu$, and the algebra numerical range $$ V(A) = \{ f(A) : f \in \mathcal{S} \}, $$ where $\mathcal{S}$ is the set of states on the normed algebra $M_n$ under the operator norm induced by $\nu$. For a symmetric norm $\nu$, we identify all linear maps on $M_n$ that preserve either one of the two norm numerical ranges or the set of states or vector states. We also identify the numerical radius isometries, {\it i.e.}, linear maps that preserve the (one) numerical radius induced by either numerical range. In particular, it is shown that if $\nu$ is not the $\ell_1$, $\ell_2$, or $\ell_\infty$ norms, then the linear maps that preserve either numerical range or either set of states are ``inner'', {\it i.e.}, of the form $A\mapsto Q^*AQ$, where $Q$ is a product of a diagonal unitary matrix and a permutation matrix and the numerical radius isometries are unimodular scalar multiples of such inner maps. For the $\ell_1$ and the $\ell_\infty$ norms, the results are quite different.

Keywords:Numerical range, numerical radius, state, isometry
Categories:15A60, 15A04, 47A12, 47A30

19. CJM 2003 (vol 55 pp. 1000)

Graczyk, P.; Sawyer, P.
Some Convexity Results for the Cartan Decomposition
In this paper, we consider the set $\mathcal{S} = a(e^X K e^Y)$ where $a(g)$ is the abelian part in the Cartan decomposition of $g$. This is exactly the support of the measure intervening in the product formula for the spherical functions on symmetric spaces of noncompact type. We give a simple description of that support in the case of $\SL(3,\mathbf{F})$ where $\mathbf{F} = \mathbf{R}$, $\mathbf{C}$ or $\mathbf{H}$. In particular, we show that $\mathcal{S}$ is convex. We also give an application of our result to the description of singular values of a product of two arbitrary matrices with prescribed singular values.

Keywords:convexity theorems, Cartan decomposition, spherical functions, product formula, semisimple Lie groups, singular values
Categories:43A90, 53C35, 15A18

20. CJM 2003 (vol 55 pp. 91)

Choi, Man-Duen; Li, Chi-Kwong; Poon, Yiu-Tung
Some Convexity Features Associated with Unitary Orbits
Let $\mathcal{H}_n$ be the real linear space of $n\times n$ complex Hermitian matrices. The unitary (similarity) orbit $\mathcal{U} (C)$ of $C \in \mathcal{H}_n$ is the collection of all matrices unitarily similar to $C$. We characterize those $C \in \mathcal{H}_n$ such that every matrix in the convex hull of $\mathcal{U}(C)$ can be written as the average of two matrices in $\mathcal{U}(C)$. The result is used to study spectral properties of submatrices of matrices in $\mathcal{U}(C)$, the convexity of images of $\mathcal{U} (C)$ under linear transformations, and some related questions concerning the joint $C$-numerical range of Hermitian matrices. Analogous results on real symmetric matrices are also discussed.

Keywords:Hermitian matrix, unitary orbit, eigenvalue, joint numerical range
Categories:15A60, 15A42

21. CJM 2002 (vol 54 pp. 571)

Li, Chi-Kwong; Poon, Yiu-Tung
Diagonals and Partial Diagonals of Sum of Matrices
Given a matrix $A$, let $\mathcal{O}(A)$ denote the orbit of $A$ under a certain group action such as \begin{enumerate}[(4)] \item[(1)] $U(m) \otimes U(n)$ acting on $m \times n$ complex matrices $A$ by $(U,V)*A = UAV^t$, \item[(2)] $O(m) \otimes O(n)$ or $\SO(m) \otimes \SO(n)$ acting on $m \times n$ real matrices $A$ by $(U,V)*A = UAV^t$, \item[(3)] $U(n)$ acting on $n \times n$ complex symmetric or skew-symmetric matrices $A$ by $U*A = UAU^t$, \item[(4)] $O(n)$ or $\SO(n)$ acting on $n \times n$ real symmetric or skew-symmetric matrices $A$ by $U*A = UAU^t$. \end{enumerate} Denote by $$ \mathcal{O}(A_1,\dots,A_k) = \{X_1 + \cdots + X_k : X_i \in \mathcal{O}(A_i), i = 1,\dots,k\} $$ the joint orbit of the matrices $A_1,\dots,A_k$. We study the set of diagonals or partial diagonals of matrices in $\mathcal{O}(A_1,\dots,A_k)$, {\it i.e.}, the set of vectors $(d_1,\dots,d_r)$ whose entries lie in the $(1,j_1),\dots,(r,j_r)$ positions of a matrix in $\mathcal{O}(A_1, \dots,A_k)$ for some distinct column indices $j_1,\dots,j_r$. In many cases, complete description of these sets is given in terms of the inequalities involving the singular values of $A_1,\dots,A_k$. We also characterize those extreme matrices for which the equality cases hold. Furthermore, some convexity properties of the joint orbits are considered. These extend many classical results on matrix inequalities, and answer some questions by Miranda. Related results on the joint orbit $\mathcal{O}(A_1,\dots,A_k)$ of complex Hermitian matrices under the action of unitary similarities are also discussed.

Keywords:orbit, group actions, unitary, orthogonal, Hermitian, (skew-)symmetric matrices, diagonal, singular values
Categories:15A42, 15A18

22. CJM 2001 (vol 53 pp. 758)

Goulden, I. P.; Jackson, D. M.; Latour, F. G.
Inequivalent Transitive Factorizations into Transpositions
The question of counting minimal factorizations of permutations into transpositions that act transitively on a set has been studied extensively in the geometrical setting of ramified coverings of the sphere and in the algebraic setting of symmetric functions. It is natural, however, from a combinatorial point of view to ask how such results are affected by counting up to equivalence of factorizations, where two factorizations are equivalent if they differ only by the interchange of adjacent factors that commute. We obtain an explicit and elegant result for the number of such factorizations of permutations with precisely two factors. The approach used is a combinatorial one that rests on two constructions. We believe that this approach, and the combinatorial primitives that have been developed for the ``cut and join'' analysis, will also assist with the general case.

Keywords:transitive, transposition, factorization, commutation, cut-and-join
Categories:05C38, 15A15, 05A15, 15A18

23. CJM 2001 (vol 53 pp. 470)

Bauschke, Heinz H.; Güler, Osman; Lewis, Adrian S.; Sendov, Hristo S.
Hyperbolic Polynomials and Convex Analysis
A homogeneous real polynomial $p$ is {\em hyperbolic} with respect to a given vector $d$ if the univariate polynomial $t \mapsto p(x-td)$ has all real roots for all vectors $x$. Motivated by partial differential equations, G{\aa}rding proved in 1951 that the largest such root is a convex function of $x$, and showed various ways of constructing new hyperbolic polynomials. We present a powerful new such construction, and use it to generalize G{\aa}rding's result to arbitrary symmetric functions of the roots. Many classical and recent inequalities follow easily. We develop various convex-analytic tools for such symmetric functions, of interest in interior-point methods for optimization problems over related cones.

Keywords:convex analysis, eigenvalue, G{\aa}rding's inequality, hyperbolic barrier function, hyperbolic polynomial, hyperbolicity cone, interior-point method, semidefinite program, singular value, symmetric function
Categories:90C25, 15A45, 52A41

24. CJM 2000 (vol 52 pp. 141)

Li, Chi-Kwong; Tam, Tin-Yau
Numerical Ranges Arising from Simple Lie Algebras
A unified formulation is given to various generalizations of the classical numerical range including the $c$-numerical range, congruence numerical range, $q$-numerical range and von Neumann range. Attention is given to those cases having connections with classical simple real Lie algebras. Convexity and inclusion relation involving those generalized numerical ranges are investigated. The underlying geometry is emphasized.

Keywords:numerical range, convexity, inclusion relation
Categories:15A60, 17B20

25. CJM 2000 (vol 52 pp. 197)

Radjavi, Heydar
Sublinearity and Other Spectral Conditions on a Semigroup
Subadditivity, sublinearity, submultiplicativity, and other conditions are considered for spectra of pairs of operators on a Hilbert space. Sublinearity, for example, is a weakening of the well-known property~$L$ and means $\sigma(A+\lambda B) \subseteq \sigma(A) + \lambda \sigma(B)$ for all scalars $\lambda$. The effect of these conditions is examined on commutativity, reducibility, and triangularizability of multiplicative semigroups of operators. A sample result is that sublinearity of spectra implies simultaneous triangularizability for a semigroup of compact operators.

Categories:47A15, 47D03, 15A30, 20A20, 47A10, 47B10
Page
   1 2    

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/