Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 14R20 ( Group actions on affine varieties [See also 13A50, 14L30] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2008 (vol 60 pp. 109)

Gurjar, R. V.; Masuda, K.; Miyanishi, M.; Russell, P.
Affine Lines on Affine Surfaces and the Makar--Limanov Invariant
A smooth affine surface $X$ defined over the complex field $\C$ is an $\ML_0$ surface if the Makar--Limanov invariant $\ML(X)$ is trivial. In this paper we study the topology and geometry of $\ML_0$ surfaces. Of particular interest is the question: Is every curve $C$ in $X$ which is isomorphic to the affine line a fiber component of an $\A^1$-fibration on $X$? We shall show that the answer is affirmative if the Picard number $\rho(X)=0$, but negative in case $\rho(X) \ge 1$. We shall also study the ascent and descent of the $\ML_0$ property under proper maps.

Categories:14R20, 14L30

2. CJM 2004 (vol 56 pp. 1145)

Daigle, Daniel; Russell, Peter
On Log $\mathbb Q$-Homology Planes and Weighted Projective Planes
We classify normal affine surfaces with trivial Makar-Limanov invariant and finite Picard group of the smooth locus, realizing them as open subsets of weighted projective planes. We also show that such a surface admits, up to conjugacy, one or two $G_a$-actions.

Categories:14R05, 14J26, 14R20

© Canadian Mathematical Society, 2014 :