Expand all Collapse all | Results 1 - 3 of 3 |
1. CJM 2009 (vol 61 pp. 930)
Prolongations and Computational Algebra We explore the geometric notion of prolongations in the setting of
computational algebra, extending results of Landsberg and Manivel
which relate prolongations to equations for secant varieties. We also
develop methods for computing prolongations that are combinatorial in
nature. As an application, we use prolongations to derive a new
family of secant equations for the binary symmetric model in
phylogenetics.
Categories:13P10, 14M99 |
2. CJM 1998 (vol 50 pp. 829)
Conjugacy classes and nilpotent variety of a reductive monoid We continue in this paper our study of conjugacy classes
of a reductive monoid $M$. The main theorems establish a strong connection
with the Bruhat-Renner decomposition of $M$. We use our results to decompose
the variety $M_{\nil}$ of nilpotent elements of $M$ into irreducible components.
We also identify a class of nilpotent elements that we call standard and prove
that the number of conjugacy classes of standard nilpotent elements is always
finite.
Categories:20G99, 20M10, 14M99, 20F55 |
3. CJM 1998 (vol 50 pp. 525)
Nilpotent orbit varieties and the atomic decomposition of the $q$-Kostka polynomials We study the coordinate rings~$k[\Cmubar\cap\hbox{\Frakvii t}]$ of
scheme-theoretic
intersections of nilpotent orbit closures with the diagonal matrices.
Here $\mu'$ gives the Jordan block structure of the nilpotent matrix.
de Concini and Procesi~\cite{deConcini&Procesi} proved a conjecture of
Kraft~\cite{Kraft} that these rings are isomorphic to the cohomology
rings of the varieties constructed by
Springer~\cite{Springer76,Springer78}. The famous $q$-Kostka
polynomial~$\Klmt(q)$ is the Hilbert series for the
multiplicity of the irreducible symmetric group representation indexed
by~$\lambda$ in the ring $k[\Cmubar\cap\hbox{\Frakvii t}]$.
\LS~\cite{L&S:Plaxique,Lascoux} gave combinatorially a decomposition
of~$\Klmt(q)$ as a sum of ``atomic'' polynomials with
non-negative integer coefficients, and Lascoux proposed a
corresponding decomposition in the cohomology model.
Our work provides a geometric interpretation of the atomic
decomposition. The Frobenius-splitting results of Mehta and van der
Kallen~\cite{Mehta&vanderKallen} imply a direct-sum decomposition of
the ideals of nilpotent orbit closures, arising from the inclusions of
the corresponding sets. We carry out the restriction to the diagonal
using a recent theorem of Broer~\cite{Broer}. This gives a direct-sum
decomposition of the ideals yielding the $k[\Cmubar\cap
\hbox{\Frakvii t}]$, and a new proof of the atomic decomposition of
the $q$-Kostka polynomials.
Keywords:$q$-Kostka polynomials, atomic decomposition, nilpotent conjugacy classes, nilpotent orbit varieties Categories:05E10, 14M99, 20G05, 05E15 |