Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 14J32 ( Calabi-Yau manifolds )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2011 (vol 63 pp. 616)

Lee, Edward
A Modular Quintic Calabi-Yau Threefold of Level 55
In this note we search the parameter space of Horrocks-Mumford quintic threefolds and locate a Calabi-Yau threefold that is modular, in the sense that the $L$-function of its middle-dimensional cohomology is associated with a classical modular form of weight 4 and level 55.

Keywords: Calabi-Yau threefold, non-rigid Calabi-Yau threefold, two-dimensional Galois representation, modular variety, Horrocks-Mumford vector bundle
Categories:14J15, 11F23, 14J32, 11G40

2. CJM 2009 (vol 61 pp. 1050)

Bertin, Marie-Amélie
Examples of Calabi--Yau 3-Folds of $\mathbb{P}^{7}$ with $\rho=1$
We give some examples of Calabi--Yau $3$-folds with $\rho=1$ and $\rho=2$, defined over $\mathbb{Q}$ and constructed as $4$-codimensional subvarieties of $\mathbb{P}^7$ via commutative algebra methods. We explain how to deduce their Hodge diamond and top Chern classes from computer based computations over some finite field $\mathbb{F}_{p}$. Three of our examples (of degree $17$ and $20$) are new. The two others (degree $15$ and $18$) are known, and we recover their well-known invariants with our method. These examples are built out of Gulliksen--Neg{\aa}rd and Kustin--Miller complexes of locally free sheaves. Finally, we give two new examples of Calabi--Yau $3$-folds of $\mathbb{P}^6$ of degree $14$ and $15$ (defined over $\mathbb{Q}$). We show that they are not deformation equivalent to Tonoli's examples of the same degree, despite the fact that they have the same invariants $(H^3,c_2\cdot H, c_3)$ and $\rho=1$.

Categories:14J32, 14Q15

© Canadian Mathematical Society, 2014 :