1. CJM 2011 (vol 64 pp. 123)
 Lee, JaeHyouk

Gosset Polytopes in Picard Groups of del Pezzo Surfaces
In this article, we study the correspondence between the geometry of
del Pezzo surfaces $S_{r}$ and the geometry of the $r$dimensional Gosset
polytopes $(r4)_{21}$. We construct Gosset polytopes $(r4)_{21}$ in
$\operatorname{Pic} S_{r}\otimes\mathbb{Q}$ whose vertices are lines, and we identify
divisor classes in $\operatorname{Pic} S_{r}$ corresponding to $(a1)$simplexes ($a\leq
r$), $(r1)$simplexes and $(r1)$crosspolytopes of the polytope $(r4)_{21}$.
Then we explain how these classes correspond to skew $a$lines($a\leq r$),
exceptional systems, and rulings, respectively.
As an application, we work on the monoidal transform for lines to study the
local geometry of the polytope $(r4)_{21}$. And we show that the Gieser transformation
and the Bertini transformation induce a symmetry of polytopes $3_{21}$ and
$4_{21}$, respectively.
Categories:51M20, 14J26, 22E99 

2. CJM 2008 (vol 60 pp. 64)
3. CJM 2007 (vol 59 pp. 1098)
 Rodrigues, B.

Ruled Exceptional Surfaces and the Poles of Motivic Zeta Functions
In this paper we study ruled surfaces which appear as an exceptional
surface in a succession of blowingups. In particular we prove
that the $e$invariant of such a ruled exceptional surface $E$ is
strictly positive whenever its intersection with the other
exceptional surfaces does not contain a fiber (of $E$). This fact
immediately enables us to resolve an open problem concerning an
intersection configuration on such a ruled exceptional surface
consisting of three nonintersecting sections. In the second part
of the paper we apply the nonvanishing of $e$ to the study of the
poles of the wellknown topological, Hodge and motivic zeta
functions.
Categories:14E15, 14J26, 14B05, 14J17, 32S45 

4. CJM 2004 (vol 56 pp. 1145)