CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 14G40 ( Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2010 (vol 63 pp. 86)

Chen, Xi
On Vojta's $1+\varepsilon$ Conjecture
We give another proof of Vojta's $1+\varepsilon$ conjecture.

Keywords:Vojta, 1+epsilon
Categories:14G40, 14H15

2. CJM 2009 (vol 61 pp. 1118)

Pontreau, Corentin
Petits points d'une surface
Pour toute sous-vari\'et\'e g\'eom\'etriquement irr\'eductible $V$ du grou\-pe multiplicatif $\mathbb{G}_m^n$, on sait qu'en dehors d'un nombre fini de translat\'es de tores exceptionnels inclus dans $V$, tous les points sont de hauteur minor\'ee par une certaine quantit\'e $q(V)^{-1}>0$. On conna\^it de plus une borne sup\'erieure pour la somme des degr\'es de ces translat\'es de tores pour des valeurs de $q(V)$ polynomiales en le degr\'e de $V$. Ceci n'est pas le cas si l'on exige une minoration quasi-optimale pour la hauteur des points de $V$, essentiellement lin\'eaire en l'inverse du degr\'e. Nous apportons ici une r\'eponse partielle \`a ce probl\`eme\,: nous donnons une majoration de la somme des degr\'es de ces translat\'es de sous-tores de codimension $1$ d'une hypersurface $V$. Les r\'esultats, obtenus dans le cas de $\mathbb{G}_m^3$, mais compl\`etement explicites, peuvent toutefois s'\'etendre \`a $\mathbb{G}_m^n$, moyennant quelques petites complications inh\'erentes \`a la dimension $n$.

Keywords:Hauteur normalisée, groupe multiplicatif, problème de Lehmer, petits points
Categories:11G50, 11J81, 14G40

© Canadian Mathematical Society, 2014 : https://cms.math.ca/