CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 14E15 ( Global theory and resolution of singularities [See also 14B05, 32S20, 32S45] )

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2007 (vol 59 pp. 1098)

Rodrigues, B.
Ruled Exceptional Surfaces and the Poles of Motivic Zeta Functions
In this paper we study ruled surfaces which appear as an exceptional surface in a succession of blowing-ups. In particular we prove that the $e$-invariant of such a ruled exceptional surface $E$ is strictly positive whenever its intersection with the other exceptional surfaces does not contain a fiber (of $E$). This fact immediately enables us to resolve an open problem concerning an intersection configuration on such a ruled exceptional surface consisting of three nonintersecting sections. In the second part of the paper we apply the non-vanishing of $e$ to the study of the poles of the well-known topological, Hodge and motivic zeta functions.

Categories:14E15, 14J26, 14B05, 14J17, 32S45

2. CJM 2002 (vol 54 pp. 55)

Ban, Chunsheng; McEwan, Lee J.; Némethi, András
On the Milnor Fiber of a Quasi-ordinary Surface Singularity
We verify a generalization of (3.3) from \cite{Le} proving that the homotopy type of the Milnor fiber of a reduced hypersurface singularity depends only on the embedded topological type of the singularity. In particular, using \cite{Za,Li1,Oh1,Gau} for irreducible quasi-ordinary germs, it depends only on the normalized distinguished pairs of the singularity. The main result of the paper provides an explicit formula for the Euler-characteristic of the Milnor fiber in the surface case.

Categories:14B05, 14E15, 32S55

3. CJM 2001 (vol 53 pp. 834)

Veys, Willem
Zeta Functions and `Kontsevich Invariants' on Singular Varieties
Let $X$ be a nonsingular algebraic variety in characteristic zero. To an effective divisor on $X$ Kontsevich has associated a certain motivic integral, living in a completion of the Grothendieck ring of algebraic varieties. He used this invariant to show that birational (smooth, projective) Calabi-Yau varieties have the same Hodge numbers. Then Denef and Loeser introduced the invariant {\it motivic (Igusa) zeta function}, associated to a regular function on $X$, which specializes to both the classical $p$-adic Igusa zeta function and the topological zeta function, and also to Kontsevich's invariant. This paper treats a generalization to singular varieties. Batyrev already considered such a `Kontsevich invariant' for log terminal varieties (on the level of Hodge polynomials of varieties instead of in the Grothendieck ring), and previously we introduced a motivic zeta function on normal surface germs. Here on any $\bbQ$-Gorenstein variety $X$ we associate a motivic zeta function and a `Kontsevich invariant' to effective $\bbQ$-Cartier divisors on $X$ whose support contains the singular locus of~$X$.

Keywords:singularity invariant, topological zeta function, motivic zeta function
Categories:14B05, 14E15, 32S50, 32S45

4. CJM 2000 (vol 52 pp. 1018)

Reichstein, Zinovy; Youssin, Boris
Essential Dimensions of Algebraic Groups and a Resolution Theorem for $G$-Varieties
Let $G$ be an algebraic group and let $X$ be a generically free $G$-variety. We show that $X$ can be transformed, by a sequence of blowups with smooth $G$-equivariant centers, into a $G$-variety $X'$ with the following property the stabilizer of every point of $X'$ is isomorphic to a semidirect product $U \sdp A$ of a unipotent group $U$ and a diagonalizable group $A$. As an application of this result, we prove new lower bounds on essential dimensions of some algebraic groups. We also show that certain polynomials in one variable cannot be simplified by a Tschirnhaus transformation.

Categories:14L30, 14E15, 14E05, 12E05, 20G10

© Canadian Mathematical Society, 2014 : https://cms.math.ca/