Expand all Collapse all | Results 1 - 3 of 3 |
1. CJM 2011 (vol 63 pp. 755)
On the Geometry of the Moduli Space of Real Binary Octics The moduli space of smooth real binary octics has five connected
components. They parametrize the real binary octics whose defining
equations have $0,\dots,4$ complex-conjugate pairs of roots
respectively. We show that each of these five components has a real
hyperbolic structure in the sense that each is isomorphic as a
real-analytic manifold to the quotient of an open dense subset of
$5$-dimensional real hyperbolic space $\mathbb{RH}^5$ by the action of an
arithmetic subgroup of $\operatorname{Isom}(\mathbb{RH}^5)$. These subgroups are
commensurable to discrete hyperbolic reflection groups, and the
Vinberg diagrams of the latter are computed.
Keywords:real binary octics, moduli space, complex hyperbolic geometry, Vinberg algorithm Categories:32G13, 32G20, 14D05, 14D20 |
2. CJM 2004 (vol 56 pp. 1308)
Variations of Mixed Hodge Structures of Multiple Polylogarithms It is well known that multiple polylogarithms give rise to
good unipotent variations of mixed Hodge-Tate structures.
In this paper we shall {\em explicitly} determine these structures
related to multiple logarithms and some other multiple polylogarithms
of lower weights. The purpose of this explicit construction
is to give some important applications: First we study the limit of
mixed Hodge-Tate structures and make a conjecture relating the variations
of mixed Hodge-Tate structures of multiple logarithms to those of
general multiple {\em poly}\/logarithms. Then following
Deligne and Beilinson we describe an
approach to defining the single-valued
real analytic version of the multiple polylogarithms which
generalizes the well-known result of Zagier on
classical polylogarithms. In the process we find some interesting
identities relating single-valued multiple polylogarithms of the
same weight $k$ when $k=2$ and 3. At the end of this paper,
motivated by Zagier's conjecture we pose
a problem which relates the special values of multiple
Dedekind zeta functions of a number field to the single-valued
version of multiple polylogarithms.
Categories:14D07, 14D05, 33B30 |
3. CJM 2004 (vol 56 pp. 310)
The Geometry of Quadratic Differential Systems with a Weak Focus of Third Order In this article we determine the global geometry of the planar
quadratic differential systems with a weak focus of third order. This
class plays a significant role in the context of Hilbert's 16-th
problem. Indeed, all examples of quadratic differential systems with
at least four limit cycles, were obtained by perturbing a system in
this family. We use the algebro-geometric concepts of divisor and
zero-cycle to encode global properties of the systems and to give
structure to this class. We give a theorem of topological
classification of such systems in terms of integer-valued affine
invariants. According to the possible values taken by them in this
family we obtain a total of $18$ topologically distinct phase
portraits. We show that inside the class of all quadratic systems
with the topology of the coefficients, there exists a neighborhood of
the family of quadratic systems with a weak focus of third order and
which may have graphics but no polycycle in the sense of \cite{DRR}
and no limit cycle, such that any quadratic system in this
neighborhood has at most four limit cycles.
Categories:34C40, 51F14, 14D05, 14D25 |