Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 14C99 ( None of the above, but in this section )

  Expand all        Collapse all Results 1 - 1 of 1

1. CJM 2000 (vol 52 pp. 123)

Harbourne, Brian
An Algorithm for Fat Points on $\mathbf{P}^2
Let $F$ be a divisor on the blow-up $X$ of $\pr^2$ at $r$ general points $p_1, \dots, p_r$ and let $L$ be the total transform of a line on $\pr^2$. An approach is presented for reducing the computation of the dimension of the cokernel of the natural map $\mu_F \colon \Gamma \bigl( \CO_X(F) \bigr) \otimes \Gamma \bigl( \CO_X(L) \bigr) \to \Gamma \bigl( \CO_X(F) \otimes \CO_X(L) \bigr)$ to the case that $F$ is ample. As an application, a formula for the dimension of the cokernel of $\mu_F$ is obtained when $r = 7$, completely solving the problem of determining the modules in minimal free resolutions of fat point subschemes\break $m_1 p_1 + \cdots + m_7 p_7 \subset \pr^2$. All results hold for an arbitrary algebraically closed ground field~$k$.

Keywords:Generators, syzygies, resolution, fat points, maximal rank, plane, Weyl group
Categories:13P10, 14C99, 13D02, 13H15

© Canadian Mathematical Society, 2014 :