Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 14B15 ( Local cohomology [See also 13D45, 32C36] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2005 (vol 57 pp. 1178)

Cutkosky, Steven Dale; Hà, Huy Tài; Srinivasan, Hema; Theodorescu, Emanoil
Asymptotic Behavior of the Length of Local Cohomology
Let $k$ be a field of characteristic 0, $R=k[x_1, \ldots, x_d]$ be a polynomial ring, and $\mm$ its maximal homogeneous ideal. Let $I \subset R$ be a homogeneous ideal in $R$. Let $\lambda(M)$ denote the length of an $R$-module $M$. In this paper, we show that $$ \lim_{n \to \infty} \frac{\l\bigl(H^0_{\mathfrak{m}}(R/I^n)\bigr)}{n^d} =\lim_{n \to \infty} \frac{\l\bigl(\Ext^d_R\bigl(R/I^n,R(-d)\bigr)\bigr)}{n^d} $$ always exists. This limit has been shown to be ${e(I)}/{d!}$ for $m$-primary ideals $I$ in a local Cohen--Macaulay ring, where $e(I)$ denotes the multiplicity of $I$. But we find that this limit may not be rational in general. We give an example for which the limit is an irrational number thereby showing that the lengths of these extention modules may not have polynomial growth.

Keywords:powers of ideals, local cohomology, Hilbert function, linear growth
Categories:13D40, 14B15, 13D45

2. CJM 1998 (vol 50 pp. 863)

Yekutieli, Amnon
Smooth formal embeddings and the residue complex
Let $\pi\colon X \ar S$ be a finite type morphism of noetherian schemes. A {\it smooth formal embedding\/} of $X$ (over $S$) is a bijective closed immersion $X \subset \mfrak{X}$, where $\mfrak{X}$ is a noetherian formal scheme, formally smooth over $S$. An example of such an embedding is the formal completion $\mfrak{X} = Y_{/ X}$ where $X \subset Y$ is an algebraic embedding. Smooth formal embeddings can be used to calculate algebraic De~Rham (co)homology. Our main application is an explicit construction of the Grothendieck residue complex when $S$ is a regular scheme. By definition the residue complex is the Cousin complex of $\pi^{!} \mcal{O}_{S}$, as in \cite{RD}. We start with I-C.~Huang's theory of pseudofunctors on modules with $0$-dimensional support, which provides a graded sheaf $\bigoplus_{q} \mcal{K}^{q}_{\,X / S}$. We then use smooth formal embeddings to obtain the coboundary operator $\delta \colon\mcal{K}^{q}_{X / S} \ar \mcal{K}^{q + 1}_{\,X / S}$. We exhibit a canonical isomorphism between the complex $(\mcal{K}^{\bdot}_{\,X / S}, \delta)$ and the residue complex of \cite{RD}. When $\pi$ is equidimensional of dimension $n$ and generically smooth we show that $\mrm{H}^{-n} \mcal{K}^{\bdot}_{\,X/S}$ is canonically isomorphic to to the sheaf of regular differentials of Kunz-Waldi \cite{KW}. Another issue we discuss is Grothendieck Duality on a noetherian formal scheme $\mfrak{X}$. Our results on duality are used in the construction of $\mcal{K}^{\bdot}_{\,X / S}$.

Categories:14B20, 14F10, 14B15, 14F20

© Canadian Mathematical Society, 2014 :