1. CJM 2006 (vol 58 pp. 93)
 Gordon, Julia

Motivic Haar Measure on Reductive Groups
We define a motivic analogue of the Haar measure for groups of the form
$G(k\llp t\rrp)$, where~$k$ is an algebraically closed field
of characteristic zero, and $G$ is a reductive algebraic group defined over
$k$.
A classical Haar measure on such groups does not
exist since they are not locally compact.
We use the theory of motivic integration introduced by M.~Kontsevich to
define an additive function on a certain natural Boolean algebra of subsets of
$G(k\llp t\rrp)$. This function takes values in the socalled dimensional
completion of
the Grothendieck ring of the category of varieties over the base
field. It is invariant under translations by all elements of $G(k\llp t\rrp)$,
and therefore we call it a motivic analogue of Haar measure.
We give an explicit construction of the motivic Haar measure, and then prove
that the result is independent of all the choices that are made in the process.
Keywords:motivic integration, reductive group Categories:14A15, 14L15 

2. CJM 2004 (vol 56 pp. 716)
 Guardo, Elena; Van Tuyl, Adam

Fat Points in $\mathbb{P}^1 \times \mathbb{P}^1$ and Their Hilbert Functions
We study the Hilbert functions of fat points in $\popo$.
If $Z \subseteq \popo$ is an arbitrary fat point scheme, then
it can be shown that for every $i$ and $j$ the values of the Hilbert
function $_{Z}(l,j)$ and $H_{Z}(i,l)$ eventually become constant for
$l \gg 0$. We show how to determine these eventual values
by using only the multiplicities of the points, and the
relative positions of the points in $\popo$. This enables
us to compute all but a finite number values of $H_{Z}$
without using the coordinates of points.
We also characterize the ACM fat point schemes
sing our description of the eventual behaviour. In fact,
n the case that $Z \subseteq \popo$ is ACM, then
the entire Hilbert function and its minimal free resolution
depend solely on knowing the eventual values of the Hilbert function.
Keywords:Hilbert function, points, fat points, CohenMacaulay, multiprojective space Categories:13D40, 13D02, 13H10, 14A15 
