CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 14 ( Algebraic geometry )

  Expand all        Collapse all Results 101 - 125 of 147

101. CJM 2003 (vol 55 pp. 839)

Lee, Min Ho
Cohomology of Complex Torus Bundles Associated to Cocycles
Equivariant holomorphic maps of Hermitian symmetric domains into Siegel upper half spaces can be used to construct families of abelian varieties parametrized by locally symmetric spaces, which can be regarded as complex torus bundles over the parameter spaces. We extend the construction of such torus bundles using 2-cocycles of discrete subgroups of the semisimple Lie groups associated to the given symmetric domains and investigate some of their properties. In particular, we determine their cohomology along the fibers.

Categories:14K10, 14D06, 14F99

102. CJM 2003 (vol 55 pp. 766)

Kerler, Thomas
Homology TQFT's and the Alexander--Reidemeister Invariant of 3-Manifolds via Hopf Algebras and Skein Theory
We develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of a 3-manifold from a surgery presentation employing the methods used in the construction of quantum invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence between the topological quantum field theory constructed by Frohman and Nicas using the homology of $U(1)$-representation varieties on the one side and the combinatorially constructed Hennings TQFT based on the quasitriangular Hopf algebra $\mathcal{N} = \mathbb{Z}/2 \ltimes \bigwedge^* \mathbb{R}^2$ on the other side. We find that both TQFT's are $\SL (2,\mathbb{R})$-equivariant functors and, as such, are isomorphic. The $\SL (2,\mathbb{R})$-action in the Hennings construction comes from the natural action on $\mathcal{N}$ and in the case of the Frohman--Nicas theory from the Hard--Lefschetz decomposition of the $U(1)$-moduli spaces given that they are naturally K\"ahler. The irreducible components of this TQFT, corresponding to simple representations of $\SL(2,\mathbb{Z})$ and $\Sp(2g,\mathbb{Z})$, thus yield a large family of homological TQFT's by taking sums and products. We give several examples of TQFT's and invariants that appear to fit into this family, such as Milnor and Reidemeister Torsion, Seiberg--Witten theories, Casson type theories for homology circles {\it \`a la} Donaldson, higher rank gauge theories following Frohman and Nicas, and the $\mathbb{Z}/p\mathbb{Z}$ reductions of Reshetikhin--Turaev theories over the cyclotomic integers $\mathbb{Z} [\zeta_p]$. We also conjecture that the Hennings TQFT for quantum-$\mathfrak{sl}_2$ is the product of the Reshetikhin--Turaev TQFT and such a homological TQFT.

Categories:57R56, 14D20, 16W30, 17B37, 18D35, 57M27

103. CJM 2003 (vol 55 pp. 693)

Borne, Niels
Une formule de Riemann-Roch équivariante pour les courbes
Soit $G$ un groupe fini agissant sur une courbe alg\'ebrique projective et lisse $X$ sur un corps alg\'ebriquement clos $k$. Dans cet article, on donne une formule de Riemann-Roch pour la caract\'eristique d'Euler \'equivariante d'un $G$-faisceau inversible $\mathcal{L}$, \`a valeurs dans l'anneau $R_k (G)$ des caract\`eres du groupe $G$. La formule donn\'ee a un bon comportement fonctoriel en ce sens qu'elle rel\`eve la formule classique le long du morphisme $\dim \colon R_k (G) \to \mathbb{Z}$, et est valable m\^eme pour une action sauvage. En guise d'application, on montre comment calculer explicitement le caract\`ere de l'espace des sections globales d'une large classe de $G$-faisceaux inversibles, en s'attardant sur le cas particulier d\'elicat du faisceau des diff\'erentielles sur la courbe.

Keywords:group actions on varieties or schemes,, Riemann-Roch theorems
Categories:14L30, 14C40

104. CJM 2003 (vol 55 pp. 649)

Zucconi, Francesco
Surfaces with $p_{g}=q=2$ and an Irrational Pencil
We describe the irrational pencils on surfaces of general type with $p_{g}=q=2$.

Categories:14J29, 14J25, 14D06, 14D99

105. CJM 2003 (vol 55 pp. 609)

Moraru, Ruxandra
Integrable Systems Associated to a Hopf Surface
A Hopf surface is the quotient of the complex surface $\mathbb{C}^2 \setminus \{0\}$ by an infinite cyclic group of dilations of $\mathbb{C}^2$. In this paper, we study the moduli spaces $\mathcal{M}^n$ of stable $\SL (2,\mathbb{C})$-bundles on a Hopf surface $\mathcal{H}$, from the point of view of symplectic geometry. An important point is that the surface $\mathcal{H}$ is an elliptic fibration, which implies that a vector bundle on $\mathcal{H}$ can be considered as a family of vector bundles over an elliptic curve. We define a map $G \colon \mathcal{M}^n \rightarrow \mathbb{P}^{2n+1}$ that associates to every bundle on $\mathcal{H}$ a divisor, called the graph of the bundle, which encodes the isomorphism class of the bundle over each elliptic curve. We then prove that the map $G$ is an algebraically completely integrable Hamiltonian system, with respect to a given Poisson structure on $\mathcal{M}^n$. We also give an explicit description of the fibres of the integrable system. This example is interesting for several reasons; in particular, since the Hopf surface is not K\"ahler, it is an elliptic fibration that does not admit a section.

Categories:14J60, 14D21, 14H70, 14J27

106. CJM 2003 (vol 55 pp. 561)

Laface, Antonio; Ugaglia, Luca
Quasi-Homogeneous Linear Systems on $\mathbb{P}^2$ with Base Points of Multiplicity $5$
In this paper we consider linear systems of $\mathbb{P}^2$ with all but one of the base points of multiplicity $5$. We give an explicit way to evaluate the dimensions of such systems.

Categories:14C20, 14N05

107. CJM 2003 (vol 55 pp. 533)

Edo, Eric
Automorphismes modérés de l'espace affine
Le probl\`eme de Jung-Nagata ({\it cf.}\ [J], [N]) consiste \`a savoir s'il existe des automorphismes de $k[x,y,z]$ qui ne sont pas mod\'er\'es. Nous proposons une approche nouvelle de cette question, fond\'ee sur l'utilisation de la th\'eorie des automates et du polygone de Newton. Cette approche permet notamment de g\'en\'eraliser de fa\c con significative les r\'esultats de [A]. The Jung-Nagata's problem ({\it cf.}\ [J], [N]) asks if there exists non-tame (or wild) automorphisms of $k[x,y,z]$. We give a new way to attack this question, based on the automata theory and the Newton polygon. This new approch allows us to generalize significantly the results of [A].

Keywords:tame automorphisms, automata, Newton polygon
Category:14R10

108. CJM 2003 (vol 55 pp. 248)

Dhillon, Ajneet
A Generalized Torelli Theorem
Given a smooth projective curve $C$ of positive genus $g$, Torelli's theorem asserts that the pair $\bigl( J(C),W^{g-1} \bigr)$ determines $C$. We show that the theorem is true with $W^{g-1}$ replaced by $W^d$ for each $d$ in the range $1\le d\le g-1$.

Category:14H99

109. CJM 2003 (vol 55 pp. 331)

Savitt, David
The Maximum Number of Points on a Curve of Genus $4$ over $\mathbb{F}_8$ is $25$
We prove that the maximum number of rational points on a smooth, geometrically irreducible genus 4 curve over the field of 8 elements is 25. The body of the paper shows that 27 points is not possible by combining techniques from algebraic geometry with a computer verification. The appendix shows that 26 points is not possible by examining the zeta functions.

Categories:11G20, 14H25

110. CJM 2003 (vol 55 pp. 133)

Shimada, Ichiro
On the Zariski-van Kampen Theorem
Let $f \colon E\to B$ be a dominant morphism, where $E$ and $B$ are smooth irreducible complex quasi-projective varieties, and let $F_b$ be the general fiber of $f$. We present conditions under which the homomorphism $\pi_1 (F_b)\to \pi_1 (E)$ induced by the inclusion is injective.

Category:14F35

111. CJM 2003 (vol 55 pp. 157)

Shimada, Ichiro
Zariski Hyperplane Section Theorem for Grassmannian Varieties
Let $\phi \colon X\to M$ be a morphism from a smooth irreducible complex quasi-projective variety $X$ to a Grassmannian variety $M$ such that the image is of dimension $\ge 2$. Let $D$ be a reduced hypersurface in $M$, and $\gamma$ a general linear automorphism of $M$. We show that, under a certain differential-geometric condition on $\phi(X)$ and $D$, the fundamental group $\pi_1 \bigl( (\gamma \circ \phi)^{-1} (M\setminus D) \bigr)$ is isomorphic to a central extension of $\pi_1 (M\setminus D) \times \pi_1 (X)$ by the cokernel of $\pi_2 (\phi) \colon \pi_2 (X) \to \pi_2 (M)$.

Categories:14F35, 14M15

112. CJM 2002 (vol 54 pp. 1319)

Yekutieli, Amnon
The Continuous Hochschild Cochain Complex of a Scheme
Let $X$ be a separated finite type scheme over a noetherian base ring $\mathbb{K}$. There is a complex $\widehat{\mathcal{C}}^{\cdot} (X)$ of topological $\mathcal{O}_X$-modules, called the complete Hochschild chain complex of $X$. To any $\mathcal{O}_X$-module $\mathcal{M}$---not necessarily quasi-coherent---we assign the complex $\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr)$ of continuous Hochschild cochains with values in $\mathcal{M}$. Our first main result is that when $X$ is smooth over $\mathbb{K}$ there is a functorial isomorphism $$ \mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr) \cong \R \mathcal{H}om_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) $$ in the derived category $\mathsf{D} (\Mod \mathcal{O}_{X^2})$, where $X^2 := X \times_{\mathbb{K}} X$. The second main result is that if $X$ is smooth of relative dimension $n$ and $n!$ is invertible in $\mathbb{K}$, then the standard maps $\pi \colon \widehat{\mathcal{C}}^{-q} (X) \to \Omega^q_{X/ \mathbb{K}}$ induce a quasi-isomorphism $$ \mathcal{H}om_{\mathcal{O}_X} \Bigl( \bigoplus_q \Omega^q_{X/ \mathbb{K}} [q], \mathcal{M} \Bigr) \to \mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr). $$ When $\mathcal{M} = \mathcal{O}_X$ this is the quasi-isomorphism underlying the Kontsevich Formality Theorem. Combining the two results above we deduce a decomposition of the global Hochschild cohomology $$ \Ext^i_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) \cong \bigoplus_q \H^{i-q} \Bigl( X, \bigl( \bigwedge^q_{\mathcal{O}_X} \mathcal{T}_{X/\mathbb{K}} \bigr) \otimes_{\mathcal{O}_X} \mathcal{M} \Bigr), $$ where $\mathcal{T}_{X/\mathbb{K}}$ is the relative tangent sheaf.

Keywords:Hochschild cohomology, schemes, derived categories
Categories:16E40, 14F10, 18G10, 13H10

113. CJM 2002 (vol 54 pp. 554)

Hausen, Jürgen
Equivariant Embeddings into Smooth Toric Varieties
We characterize embeddability of algebraic varieties into smooth toric varieties and prevarieties. Our embedding results hold also in an equivariant context and thus generalize a well-known embedding theorem of Sumihiro on quasiprojective $G$-varieties. The main idea is to reduce the embedding problem to the affine case. This is done by constructing equivariant affine conoids, a tool which extends the concept of an equivariant affine cone over a projective $G$-variety to a more general framework.

Categories:14E25, 14C20, 14L30, 14M25

114. CJM 2002 (vol 54 pp. 595)

Nahlus, Nazih
Lie Algebras of Pro-Affine Algebraic Groups
We extend the basic theory of Lie algebras of affine algebraic groups to the case of pro-affine algebraic groups over an algebraically closed field $K$ of characteristic 0. However, some modifications are needed in some extensions. So we introduce the pro-discrete topology on the Lie algebra $\mathcal{L}(G)$ of the pro-affine algebraic group $G$ over $K$, which is discrete in the finite-dimensional case and linearly compact in general. As an example, if $L$ is any sub Lie algebra of $\mathcal{L}(G)$, we show that the closure of $[L,L]$ in $\mathcal{L}(G)$ is algebraic in $\mathcal{L}(G)$. We also discuss the Hopf algebra of representative functions $H(L)$ of a residually finite dimensional Lie algebra $L$. As an example, we show that if $L$ is a sub Lie algebra of $\mathcal{L}(G)$ and $G$ is connected, then the canonical Hopf algebra morphism from $K[G]$ into $H(L)$ is injective if and only if $L$ is algebraically dense in $\mathcal{L}(G)$.

Categories:14L, 16W, 17B45

115. CJM 2002 (vol 54 pp. 352)

Haines, Thomas J.
On Connected Components of Shimura Varieties
We study the cohomology of connected components of Shimura varieties $S_{K^p}$ coming from the group $\GSp_{2g}$, by an approach modeled on the stabilization of the twisted trace formula, due to Kottwitz and Shelstad. More precisely, for each character $\olomega$ on the group of connected components of $S_{K^p}$ we define an operator $L(\omega)$ on the cohomology groups with compact supports $H^i_c (S_{K^p}, \olbbQ_\ell)$, and then we prove that the virtual trace of the composition of $L(\omega)$ with a Hecke operator $f$ away from $p$ and a sufficiently high power of a geometric Frobenius $\Phi^r_p$, can be expressed as a sum of $\omega$-{\em weighted} (twisted) orbital integrals (where $\omega$-{\em weighted} means that the orbital integrals and twisted orbital integrals occuring here each have a weighting factor coming from the character $\olomega$). As the crucial step, we define and study a new invariant $\alpha_1 (\gamma_0; \gamma, \delta)$ which is a refinement of the invariant $\alpha (\gamma_0; \gamma, \delta)$ defined by Kottwitz. This is done by using a theorem of Reimann and Zink.

Categories:14G35, 11F70

116. CJM 2002 (vol 54 pp. 55)

Ban, Chunsheng; McEwan, Lee J.; Némethi, András
On the Milnor Fiber of a Quasi-ordinary Surface Singularity
We verify a generalization of (3.3) from \cite{Le} proving that the homotopy type of the Milnor fiber of a reduced hypersurface singularity depends only on the embedded topological type of the singularity. In particular, using \cite{Za,Li1,Oh1,Gau} for irreducible quasi-ordinary germs, it depends only on the normalized distinguished pairs of the singularity. The main result of the paper provides an explicit formula for the Euler-characteristic of the Milnor fiber in the surface case.

Categories:14B05, 14E15, 32S55

117. CJM 2001 (vol 53 pp. 1309)

Steer, Brian; Wren, Andrew
The Donaldson-Hitchin-Kobayashi Correspondence for Parabolic Bundles over Orbifold Surfaces
A theorem of Donaldson on the existence of Hermitian-Einstein metrics on stable holomorphic bundles over a compact K\"ahler surface is extended to bundles which are parabolic along an effective divisor with normal crossings. Orbifold methods, together with a suitable approximation theorem, are used following an approach successful for the case of Riemann surfaces.

Categories:14J17, 57R57

118. CJM 2001 (vol 53 pp. 923)

Geramita, Anthony V.; Harima, Tadahito; Shin, Yong Su
Decompositions of the Hilbert Function of a Set of Points in $\P^n$
Let $\H$ be the Hilbert function of some set of distinct points in $\P^n$ and let $\alpha = \alpha (\H)$ be the least degree of a hypersurface of $\P^n$ containing these points. Write $\alpha = d_s + d_{s-1} + \cdots + d_1$ (where $d_i > 0$). We canonically decompose $\H$ into $s$ other Hilbert functions $\H \leftrightarrow (\H_s^\prime, \dots, \H_1^\prime)$ and show how to find sets of distinct points $\Y_s, \dots, \Y_1$, lying on reduced hypersurfaces of degrees $d_s, \dots, d_1$ (respectively) such that the Hilbert function of $\Y_i$ is $\H_i^\prime$ and the Hilbert function of $\Y = \bigcup_{i=1}^s \Y_i$ is $\H$. Some extremal properties of this canonical decomposition are also explored.

Categories:13D40, 14M10

119. CJM 2001 (vol 53 pp. 834)

Veys, Willem
Zeta Functions and `Kontsevich Invariants' on Singular Varieties
Let $X$ be a nonsingular algebraic variety in characteristic zero. To an effective divisor on $X$ Kontsevich has associated a certain motivic integral, living in a completion of the Grothendieck ring of algebraic varieties. He used this invariant to show that birational (smooth, projective) Calabi-Yau varieties have the same Hodge numbers. Then Denef and Loeser introduced the invariant {\it motivic (Igusa) zeta function}, associated to a regular function on $X$, which specializes to both the classical $p$-adic Igusa zeta function and the topological zeta function, and also to Kontsevich's invariant. This paper treats a generalization to singular varieties. Batyrev already considered such a `Kontsevich invariant' for log terminal varieties (on the level of Hodge polynomials of varieties instead of in the Grothendieck ring), and previously we introduced a motivic zeta function on normal surface germs. Here on any $\bbQ$-Gorenstein variety $X$ we associate a motivic zeta function and a `Kontsevich invariant' to effective $\bbQ$-Cartier divisors on $X$ whose support contains the singular locus of~$X$.

Keywords:singularity invariant, topological zeta function, motivic zeta function
Categories:14B05, 14E15, 32S50, 32S45

120. CJM 2001 (vol 53 pp. 3)

Bell, J. P.
The Equivariant Grothendieck Groups of the Russell-Koras Threefolds
The Russell-Koras contractible threefolds are the smooth affine threefolds having a hyperbolic $\mathbb{C}^*$-action with quotient isomorphic to the corresponding quotient of the linear action on the tangent space at the unique fixed point. Koras and Russell gave a concrete description of all such threefolds and determined many interesting properties they possess. We use this description and these properties to compute the equivariant Grothendieck groups of these threefolds. In addition, we give certain equivariant invariants of these rings.

Categories:14J30, 19L47

121. CJM 2001 (vol 53 pp. 73)

Fukui, Toshizumi; Paunescu, Laurentiu
Stratification Theory from the Weighted Point of View
In this paper, we investigate stratification theory in terms of the defining equations of strata and maps (without tube systems), offering a concrete approach to show that some given family is topologically trivial. In this approach, we consider a weighted version of $(w)$-regularity condition and Kuo's ratio test condition.

Categories:32B99, 14P25, 32Cxx, 58A35

122. CJM 2000 (vol 52 pp. 1149)

Ban, Chunsheng; McEwan, Lee J.
Canonical Resolution of a Quasi-ordinary Surface Singularity
We describe the embedded resolution of an irreducible quasi-ordinary surface singularity $(V,p)$ which results from applying the canonical resolution of Bierstone-Milman to $(V,p)$. We show that this process depends solely on the characteristic pairs of $(V,p)$, as predicted by Lipman. We describe the process explicitly enough that a resolution graph for $f$ could in principle be obtained by computer using only the characteristic pairs.

Keywords:canonical resolution, quasi-ordinary singularity
Categories:14B05, 14J17, 32S05, 32S25

123. CJM 2000 (vol 52 pp. 1235)

Hurtubise, J. C.; Jeffrey, L. C.
Representations with Weighted Frames and Framed Parabolic Bundles
There is a well-known correspondence (due to Mehta and Seshadri in the unitary case, and extended by Bhosle and Ramanathan to other groups), between the symplectic variety $M_h$ of representations of the fundamental group of a punctured Riemann surface into a compact connected Lie group~$G$, with fixed conjugacy classes $h$ at the punctures, and a complex variety ${\cal M}_h$ of holomorphic bundles on the unpunctured surface with a parabolic structure at the puncture points. For $G = \SU(2)$, we build a symplectic variety $P$ of pairs (representations of the fundamental group into $G$, ``weighted frame'' at the puncture points), and a corresponding complex variety ${\cal P}$ of moduli of ``framed parabolic bundles'', which encompass respectively all of the spaces $M_h$, ${\cal M}_h$, in the sense that one can obtain $M_h$ from $P$ by symplectic reduction, and ${\cal M}_h$ from ${\cal P}$ by a complex quotient. This allows us to explain certain features of the toric geometry of the $\SU(2)$ moduli spaces discussed by Jeffrey and Weitsman, by giving the actual toric variety associated with their integrable system.

Categories:58F05, 14D20

124. CJM 2000 (vol 52 pp. 1018)

Reichstein, Zinovy; Youssin, Boris
Essential Dimensions of Algebraic Groups and a Resolution Theorem for $G$-Varieties
Let $G$ be an algebraic group and let $X$ be a generically free $G$-variety. We show that $X$ can be transformed, by a sequence of blowups with smooth $G$-equivariant centers, into a $G$-variety $X'$ with the following property the stabilizer of every point of $X'$ is isomorphic to a semidirect product $U \sdp A$ of a unipotent group $U$ and a diagonalizable group $A$. As an application of this result, we prove new lower bounds on essential dimensions of some algebraic groups. We also show that certain polynomials in one variable cannot be simplified by a Tschirnhaus transformation.

Categories:14L30, 14E15, 14E05, 12E05, 20G10

125. CJM 2000 (vol 52 pp. 982)

Lárusson, Finnur
Holomorphic Functions of Slow Growth on Nested Covering Spaces of Compact Manifolds
Let $Y$ be an infinite covering space of a projective manifold $M$ in $\P^N$ of dimension $n\geq 2$. Let $C$ be the intersection with $M$ of at most $n-1$ generic hypersurfaces of degree $d$ in $\mathbb{P}^N$. The preimage $X$ of $C$ in $Y$ is a connected submanifold. Let $\phi$ be the smoothed distance from a fixed point in $Y$ in a metric pulled up from $M$. Let $\O_\phi(X)$ be the Hilbert space of holomorphic functions $f$ on $X$ such that $f^2 e^{-\phi}$ is integrable on $X$, and define $\O_\phi(Y)$ similarly. Our main result is that (under more general hypotheses than described here) the restriction $\O_\phi(Y) \to \O_\phi(X)$ is an isomorphism for $d$ large enough. This yields new examples of Riemann surfaces and domains of holomorphy in $\C^n$ with corona. We consider the important special case when $Y$ is the unit ball $\B$ in $\C^n$, and show that for $d$ large enough, every bounded holomorphic function on $X$ extends to a unique function in the intersection of all the nontrivial weighted Bergman spaces on $\B$. Finally, assuming that the covering group is arithmetic, we establish three dichotomies concerning the extension of bounded holomorphic and harmonic functions from $X$ to $\B$.

Categories:32A10, 14E20, 30F99, 32M15
Page
   1 ... 3 4 5 6    

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/