CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 14 ( Algebraic geometry )

  Expand all        Collapse all Results 76 - 100 of 165

76. CJM 2009 (vol 61 pp. 351)

Graham, William; Hunziker, Markus
Multiplication of Polynomials on Hermitian Symmetric spaces and Littlewood--Richardson Coefficients
Let $K$ be a complex reductive algebraic group and $V$ a representation of $K$. Let $S$ denote the ring of polynomials on $V$. Assume that the action of $K$ on $S$ is multiplicity-free. If $\lambda$ denotes the isomorphism class of an irreducible representation of $K$, let $\rho_\lambda\from K \rightarrow GL(V_{\lambda})$ denote the corresponding irreducible representation and $S_\lambda$ the $\lambda$-isotypic component of $S$. Write $S_\lambda \cdot S_\mu$ for the subspace of $S$ spanned by products of $S_\lambda$ and $S_\mu$. If $V_\nu$ occurs as an irreducible constituent of $V_\lambda\otimes V_\mu$, is it true that $S_\nu\subseteq S_\lambda\cdot S_\mu$? In this paper, the authors investigate this question for representations arising in the context of Hermitian symmetric pairs. It is shown that the answer is yes in some cases and, using an earlier result of Ruitenburg, that in the remaining classical cases, the answer is yes provided that a conjecture of Stanley on the multiplication of Jack polynomials is true. It is also shown how the conjecture connects multiplication in the ring $S$ to the usual Littlewood--Richardson rule.

Keywords:Hermitian symmetric spaces, multiplicity free actions, Littlewood--Richardson coefficients, Jack polynomials
Categories:14L30, 22E46

77. CJM 2009 (vol 61 pp. 29)

Casanellas, M.
The Minimal Resolution Conjecture for Points on the Cubic Surface
In this paper we prove that a generalized version of the Minimal Resolution Conjecture given by Musta\c{t}\v{a} holds for certain general sets of points on a smooth cubic surface $X \subset \PP^3$. The main tool used is Gorenstein liaison theory and, more precisely, the relationship between the free resolutions of two linked schemes.

Categories:13D02, 13C40, 14M05, 14M07

78. CJM 2009 (vol 61 pp. 205)

Marshall, M.
Representations of Non-Negative Polynomials, Degree Bounds and Applications to Optimization
Natural sufficient conditions for a polynomial to have a local minimum at a point are considered. These conditions tend to hold with probability $1$. It is shown that polynomials satisfying these conditions at each minimum point have nice presentations in terms of sums of squares. Applications are given to optimization on a compact set and also to global optimization. In many cases, there are degree bounds for such presentations. These bounds are of theoretical interest, but they appear to be too large to be of much practical use at present. In the final section, other more concrete degree bounds are obtained which ensure at least that the feasible set of solutions is not empty.

Categories:13J30, 12Y05, 13P99, 14P10, 90C22

79. CJM 2009 (vol 61 pp. 109)

Coskun, Izzet; Harris, Joe; Starr, Jason
The Ample Cone of the Kontsevich Moduli Space
We produce ample (resp.\ NEF, eventually free) divisors in the Kontsevich space $\Kgnb{0,n} (\mathbb P^r, d)$ of $n$-pointed, genus $0$, stable maps to $\mathbb P^r$, given such divisors in $\Kgnb{0,n+d}$. We prove that this produces all ample (resp.\ NEF, eventually free) divisors in $\Kgnb{0,n}(\mathbb P^r,d)$. As a consequence, we construct a contraction of the boundary $\bigcup_{k=1}^{\lfloor d/2 \rfloor} \Delta_{k,d-k}$ in $\Kgnb{0,0}(\mathbb P^r,d)$, analogous to a contraction of the boundary $\bigcup_{k=3}^{\lfloor n/2 \rfloor} \tilde{\Delta}_{k,n-k}$ in $\kgnb{0,n}$ first constructed by Keel and McKernan.

Categories:14D20, 14E99, 14H10

80. CJM 2009 (vol 61 pp. 3)

Behrend, Kai; Dhillon, Ajneet
Connected Components of Moduli Stacks of Torsors via Tamagawa Numbers
Let $X$ be a smooth projective geometrically connected curve over a finite field with function field $K$. Let $\G$ be a connected semisimple group scheme over $X$. Under certain hypotheses we prove the equality of two numbers associated with $\G$. The first is an arithmetic invariant, its Tamagawa number. The second is a geometric invariant, the number of connected components of the moduli stack of $\G$-torsors on $X$. Our results are most useful for studying connected components as much is known about Tamagawa numbers.

Categories:11E, 11R, 14D, 14H

81. CJM 2008 (vol 60 pp. 1267)

Blake, Ian F.; Murty, V. Kumar; Xu, Guangwu
Nonadjacent Radix-$\tau$ Expansions of Integers in Euclidean Imaginary Quadratic Number Fields
In his seminal papers, Koblitz proposed curves for cryptographic use. For fast operations on these curves, these papers also initiated a study of the radix-$\tau$ expansion of integers in the number fields $\Q(\sqrt{-3})$ and $\Q(\sqrt{-7})$. The (window) nonadjacent form of $\tau$-expansion of integers in $\Q(\sqrt{-7})$ was first investigated by Solinas. For integers in $\Q(\sqrt{-3})$, the nonadjacent form and the window nonadjacent form of the $\tau$-expansion were studied. These are used for efficient point multiplications on Koblitz curves. In this paper, we complete the picture by producing the (window) nonadjacent radix-$\tau$ expansions for integers in all Euclidean imaginary quadratic number fields.

Keywords:algebraic integer, radix expression, window nonadjacent expansion, algorithm, point multiplication of elliptic curves, cryptography
Categories:11A63, 11R04, 11Y16, 11Y40, 14G50

82. CJM 2008 (vol 60 pp. 961)

Abrescia, Silvia
About the Defectivity of Certain Segre--Veronese Varieties
We study the regularity of the higher secant varieties of $\PP^1\times \PP^n$, embedded with divisors of type $(d,2)$ and $(d,3)$. We produce, for the highest defective cases, a ``determinantal'' equation of the secant variety. As a corollary, we prove that the Veronese triple embedding of $\PP^n$ is not Grassmann defective.

Keywords:Waring problem, Segre--Veronese embedding, secant variety, Grassmann defectivity
Categories:14N15, 14N05, 14M12

83. CJM 2008 (vol 60 pp. 875)

Mare, Augustin-Liviu
A Characterization of the Quantum Cohomology Ring of $G/B$ and Applications
We observe that the small quantum product of the generalized flag manifold $G/B$ is a product operation $\star$ on $H^*(G/B)\otimes \bR[q_1,\dots, q_l]$ uniquely determined by the facts that: it is a deformation of the cup product on $H^*(G/B)$; it is commutative, associative, and graded with respect to $\deg(q_i)=4$; it satisfies a certain relation (of degree two); and the corresponding Dubrovin connection is flat. Previously, we proved that these properties alone imply the presentation of the ring $(H^*(G/B)\otimes \bR[q_1,\dots, q_l],\star)$ in terms of generators and relations. In this paper we use the above observations to give conceptually new proofs of other fundamental results of the quantum Schubert calculus for $G/B$: the quantum Chevalley formula of D. Peterson (see also Fulton and Woodward ) and the ``quantization by standard monomials" formula of Fomin, Gelfand, and Postnikov for $G=\SL(n,\bC)$. The main idea of the proofs is the same as in Amarzaya--Guest: from the quantum $\D$-module of $G/B$ one can decode all information about the quantum cohomology of this space.

Categories:14M15, 14N35

84. CJM 2008 (vol 60 pp. 734)

Baba, Srinath; Granath, H\aa kan
Genus 2 Curves with Quaternionic Multiplication
We explicitly construct the canonical rational models of Shimura curves, both analytically in terms of modular forms and algebraically in terms of coefficients of genus 2 curves, in the cases of quaternion algebras of discriminant 6 and 10. This emulates the classical construction in the elliptic curve case. We also give families of genus 2 QM curves, whose Jacobians are the corresponding abelian surfaces on the Shimura curve, and with coefficients that are modular forms of weight 12. We apply these results to show that our $j$-functions are supported exactly at those primes where the genus 2 curve does not admit potentially good reduction, and construct fields where this potentially good reduction is attained. Finally, using $j$, we construct the fields of moduli and definition for some moduli problems associated to the Atkin--Lehner group actions.

Keywords:Shimura curve, canonical model, quaternionic multiplication, modular form, field of moduli
Categories:11G18, 14G35

85. CJM 2008 (vol 60 pp. 556)

Draisma, Jan; Kemper, Gregor; Wehlau, David
Polarization of Separating Invariants
We prove a characteristic free version of Weyl's theorem on polarization. Our result is an exact analogue of Weyl's theorem, the difference being that our statement is about separating invariants rather than generating invariants. For the special case of finite group actions we introduce the concept of \emph{cheap polarization}, and show that it is enough to take cheap polarizations of invariants of just one copy of a representation to obtain separating vector invariants for any number of copies. This leads to upper bounds on the number and degrees of separating vector invariants of finite groups.

Keywords:Jan Draisma, Gregor Kemper, David Wehlau
Categories:13A50, 14L24

86. CJM 2008 (vol 60 pp. 532)

Clark, Pete L.; Xarles, Xavier
Local Bounds for Torsion Points on Abelian Varieties
We say that an abelian variety over a $p$-adic field $K$ has anisotropic reduction (AR) if the special fiber of its N\'eron minimal model does not contain a nontrivial split torus. This includes all abelian varieties with potentially good reduction and, in particular, those with complex or quaternionic multiplication. We give a bound for the size of the $K$-rational torsion subgroup of a $g$-dimensional AR variety depending only on $g$ and the numerical invariants of $K$ (the absolute ramification index and the cardinality of the residue field). Applying these bounds to abelian varieties over a number field with everywhere locally anisotropic reduction, we get bounds which, as a function of $g$, are close to optimal. In particular, we determine the possible cardinalities of the torsion subgroup of an AR abelian surface over the rational numbers, up to a set of 11 values which are not known to occur. The largest such value is 72.

Categories:11G10, 14K15

87. CJM 2008 (vol 60 pp. 297)

Bini, G.; Goulden, I. P.; Jackson, D. M.
Transitive Factorizations in the Hyperoctahedral Group
The classical Hurwitz enumeration problem has a presentation in terms of transitive factorizations in the symmetric group. This presentation suggests a generalization from type~$A$ to other finite reflection groups and, in particular, to type~$B$. We study this generalization both from a combinatorial and a geometric point of view, with the prospect of providing a means of understanding more of the structure of the moduli spaces of maps with an $\gS_2$-symmetry. The type~$A$ case has been well studied and connects Hurwitz numbers to the moduli space of curves. We conjecture an analogous setting for the type~$B$ case that is studied here.

Categories:05A15, 14H10, 58D29

88. CJM 2008 (vol 60 pp. 391)

Migliore, Juan C.
The Geometry of the Weak Lefschetz Property and Level Sets of Points
In a recent paper, F. Zanello showed that level Artinian algebras in 3 variables can fail to have the Weak Lefschetz Property (WLP), and can even fail to have unimodal Hilbert function. We show that the same is true for the Artinian reduction of reduced, level sets of points in projective 3-space. Our main goal is to begin an understanding of how the geometry of a set of points can prevent its Artinian reduction from having WLP, which in itself is a very algebraic notion. More precisely, we produce level sets of points whose Artinian reductions have socle types 3 and 4 and arbitrary socle degree $\geq 12$ (in the worst case), but fail to have WLP. We also produce a level set of points whose Artinian reduction fails to have unimodal Hilbert function; our example is based on Zanello's example. Finally, we show that a level set of points can have Artinian reduction that has WLP but fails to have the Strong Lefschetz Property. While our constructions are all based on basic double G-linkage, the implementations use very different methods.

Keywords:Weak Lefschetz Property, Strong Lefschetz Property, basic double G-linkage, level, arithmetically Gorenstein, arithmetically Cohen--Macaulay, socle type, socle degree, Artinian reduction
Categories:13D40, 13D02, 14C20, 13C40, 13C13, 14M05

89. CJM 2008 (vol 60 pp. 379)

rgensen, Peter J\o
Finite Cohen--Macaulay Type and Smooth Non-Commutative Schemes
A commutative local Cohen--Macaulay ring $R$ of finite Cohen--Macaulay type is known to be an isolated singularity; that is, $\Spec(R) \setminus \{ \mathfrak {m} \}$ is smooth. This paper proves a non-commutative analogue. Namely, if $A$ is a (non-commutative) graded Artin--Schelter \CM\ algebra which is fully bounded Noetherian and has finite Cohen--Macaulay type, then the non-commutative projective scheme determined by $A$ is smooth.

Keywords:Artin--Schelter Cohen--Macaulay algebra, Artin--Schelter Gorenstein algebra, Auslander's theorem on finite Cohen--Macaulay type, Cohen--Macaulay ring, fully bounded Noetherian algebra, isolated singularity, maximal Cohen--Macaulay module, non-commutative
Categories:14A22, 16E65, 16W50

90. CJM 2008 (vol 60 pp. 109)

Gurjar, R. V.; Masuda, K.; Miyanishi, M.; Russell, P.
Affine Lines on Affine Surfaces and the Makar--Limanov Invariant
A smooth affine surface $X$ defined over the complex field $\C$ is an $\ML_0$ surface if the Makar--Limanov invariant $\ML(X)$ is trivial. In this paper we study the topology and geometry of $\ML_0$ surfaces. Of particular interest is the question: Is every curve $C$ in $X$ which is isomorphic to the affine line a fiber component of an $\A^1$-fibration on $X$? We shall show that the answer is affirmative if the Picard number $\rho(X)=0$, but negative in case $\rho(X) \ge 1$. We shall also study the ascent and descent of the $\ML_0$ property under proper maps.

Categories:14R20, 14L30

91. CJM 2008 (vol 60 pp. 140)

Kedlaya, Kiran S.
On the Geometry of $p$-Typical Covers in Characteristic $p$
For $p$ a prime, a $p$-typical cover of a connected scheme on which $p=0$ is a finite \'etale cover whose monodromy group (\emph{i.e.,} the Galois group of its normal closure) is a $p$-group. The geometry of such covers exhibits some unexpectedly pleasant behaviors; building on work of Katz, we demonstrate some of these. These include a criterion for when a morphism induces an isomorphism of the $p$\nobreakdash-typi\-cal quotients of the \'etale fundamental groups, and a decomposition theorem for $p$-typical covers of polynomial rings over an algebraically closed field.

Category:14F35

92. CJM 2008 (vol 60 pp. 64)

Daigle, Daniel
Classification of Linear Weighted Graphs Up to Blowing-Up and Blowing-Down
We classify linear weighted graphs up to the blowing-up and blowing-down operations which are relevant for the study of algebraic surfaces.

Keywords:weighted graph, dual graph, blowing-up, algebraic surface
Categories:14J26, 14E07, 14R05, 05C99

93. CJM 2007 (vol 59 pp. 1069)

Reydy, Carine
Quotients jacobiens : une approche algébrique
Le diagramme d'Eisenbud et Neumann d'un germe est un arbre qui repr\'esente ce germe et permet d'en calculer les invariants. On donne une d\'emonstration alg\'ebrique d'un r\'esultat caract\'erisant l'ensemble des quotients jacobiens d'un germe d'application $(f,g)$ \`a partir du diagramme d'Eisenbud et Neumann de $fg$.

Keywords:Singularité, jacobien, quotient jacobien, polygone de Newton
Categories:14B05, 32S05, 32S50

94. CJM 2007 (vol 59 pp. 1098)

Rodrigues, B.
Ruled Exceptional Surfaces and the Poles of Motivic Zeta Functions
In this paper we study ruled surfaces which appear as an exceptional surface in a succession of blowing-ups. In particular we prove that the $e$-invariant of such a ruled exceptional surface $E$ is strictly positive whenever its intersection with the other exceptional surfaces does not contain a fiber (of $E$). This fact immediately enables us to resolve an open problem concerning an intersection configuration on such a ruled exceptional surface consisting of three nonintersecting sections. In the second part of the paper we apply the non-vanishing of $e$ to the study of the poles of the well-known topological, Hodge and motivic zeta functions.

Categories:14E15, 14J26, 14B05, 14J17, 32S45

95. CJM 2007 (vol 59 pp. 981)

Jiang, Yunfeng
The Chen--Ruan Cohomology of Weighted Projective Spaces
In this paper we study the Chen--Ruan cohomology ring of weighted projective spaces. Given a weighted projective space ${\bf P}^{n}_{q_{0}, \dots, q_{n}}$, we determine all of its twisted sectors and the corresponding degree shifting numbers. The main result of this paper is that the obstruction bundle over any 3\nobreakdash-multi\-sector is a direct sum of line bundles which we use to compute the orbifold cup product. Finally we compute the Chen--Ruan cohomology ring of weighted projective space ${\bf P}^{5}_{1,2,2,3,3,3}$.

Keywords:Chen--Ruan cohomology, twisted sectors, toric varieties, weighted projective space, localization
Categories:14N35, 53D45

96. CJM 2007 (vol 59 pp. 742)

Gil, Juan B.; Krainer, Thomas; Mendoza, Gerardo A.
Geometry and Spectra of Closed Extensions of Elliptic Cone Operators
We study the geometry of the set of closed extensions of index $0$ of an elliptic differential cone operator and its model operator in connection with the spectra of the extensions, and we give a necessary and sufficient condition for the existence of rays of minimal growth for such operators.

Keywords:resolvents, manifolds with conical singularities, spectral theor, boundary value problems, Grassmannians
Categories:58J50, 35J70, 14M15

97. CJM 2007 (vol 59 pp. 488)

Bernardi, A.; Catalisano, M. V.; Gimigliano, A.; Idà, M.
Osculating Varieties of Veronese Varieties and Their Higher Secant Varieties
We consider the $k$-osculating varieties $O_{k,n.d}$ to the (Veronese) $d$-uple embeddings of $\PP^n$. We study the dimension of their higher secant varieties via inverse systems (apolarity). By associating certain 0-dimensional schemes $Y\subset \PP^n$ to $O^s_{k,n,d}$ and by studying their Hilbert functions, we are able, in several cases, to determine whether those secant varieties are defective or not.

Categories:14N15, 15A69

98. CJM 2007 (vol 59 pp. 372)

Maisner, Daniel; Nart, Enric
Zeta Functions of Supersingular Curves of Genus 2
We determine which isogeny classes of supersingular abelian surfaces over a finite field $k$ of characteristic $2$ contain jacobians. We deal with this problem in a direct way by computing explicitly the zeta function of all supersingular curves of genus $2$. Our procedure is constructive, so that we are able to exhibit curves with prescribed zeta function and find formulas for the number of curves, up to $k$-isomorphism, leading to the same zeta function.

Categories:11G20, 14G15, 11G10

99. CJM 2007 (vol 59 pp. 36)

Develin, Mike; Martin, Jeremy L.; Reiner, Victor
Classification of Ding's Schubert Varieties: Finer Rook Equivalence
K.~Ding studied a class of Schubert varieties $X_\lambda$ in type A partial flag manifolds, indexed by integer partitions $\lambda$ and in bijection with dominant permutations. He observed that the Schubert cell structure of $X_\lambda$ is indexed by maximal rook placements on the Ferrers board $B_\lambda$, and that the integral cohomology groups $H^*(X_\lambda;\:\Zz)$, $H^*(X_\mu;\:\Zz)$ are additively isomorphic exactly when the Ferrers boards $B_\lambda, B_\mu$ satisfy the combinatorial condition of \emph{rook-equivalence}. We classify the varieties $X_\lambda$ up to isomorphism, distinguishing them by their graded cohomology rings with integer coefficients. The crux of our approach is studying the nilpotence orders of linear forms in the cohomology ring.

Keywords:Schubert variety, rook placement, Ferrers board, flag manifold, cohomology ring, nilpotence
Categories:14M15, 05E05

100. CJM 2006 (vol 58 pp. 1000)

Dhillon, Ajneet
On the Cohomology of Moduli of Vector Bundles and the Tamagawa Number of $\operatorname{SL}_n$
We compute some Hodge and Betti numbers of the moduli space of stable rank $r$, degree $d$ vector bundles on a smooth projective curve. We do not assume $r$ and $d$ are coprime. In the process we equip the cohomology of an arbitrary algebraic stack with a functorial mixed Hodge structure. This Hodge structure is computed in the case of the moduli stack of rank $r$, degree $d$ vector bundles on a curve. Our methods also yield a formula for the Poincar\'e polynomial of the moduli stack that is valid over any ground field. In the last section we use the previous sections to give a proof that the Tamagawa number of $\sln$ is one.

Categories:14H, 14L
Page
   1 ... 3 4 5 ... 7    

© Canadian Mathematical Society, 2015 : https://cms.math.ca/