1. CJM 2009 (vol 61 pp. 888)
 Novik, Isabella; Swartz, Ed

Face Ring Multiplicity via CMConnectivity Sequences
The multiplicity conjecture of Herzog, Huneke, and Srinivasan
is verified for the face rings of the following classes of
simplicial complexes: matroid complexes, complexes of dimension
one and two,
and Gorenstein complexes of dimension at most four.
The lower bound part of this conjecture is also established for the
face rings of all doubly CohenMacaulay complexes whose 1skeleton's
connectivity does not exceed the codimension plus one as well as for
all $(d1)$dimensional $d$CohenMacaulay complexes.
The main ingredient of the proofs is a new interpretation
of the minimal shifts in the resolution of the face ring
$\field[\Delta]$ via the CohenMacaulay connectivity of the
skeletons of $\Delta$.
Categories:13F55, 52B05;, 13H15;, 13D02;, 05B35 

2. CJM 2007 (vol 59 pp. 109)
 Jayanthan, A. V.; Puthenpurakal, Tony J.; Verma, J. K.

On Fiber Cones of $\m$Primary Ideals
Two formulas for the multiplicity of the fiber cone
$F(I)=\bigoplus_{n=0}^{\infty} I^n/\m I^n$ of an $\m$primary ideal of
a $d$dimensional CohenMacaulay local ring $(R,\m)$ are derived in
terms of the mixed multiplicity $e_{d1}(\m  I)$, the multiplicity
$e(I)$, and superficial elements. As a consequence, the
CohenMacaulay property of $F(I)$ when $I$ has minimal mixed
multiplicity or almost minimal mixed multiplicity is characterized
in terms of the reduction number of $I$ and lengths of certain ideals.
We also characterize the CohenMacaulay and Gorenstein properties of
fiber cones of $\m$primary ideals with a $d$generated minimal
reduction $J$ satisfying $\ell(I^2/JI)=1$ or
$\ell(I\m/J\m)=1.$
Keywords:fiber cones, mixed multiplicities, joint reductions, CohenMacaulay fiber cones, Gorenstein fiber cones, ideals having minimal and almost minimal mixed multiplicities Categories:13H10, 13H15, 13A30, 13C15, 13A02 

3. CJM 2000 (vol 52 pp. 123)
 Harbourne, Brian

An Algorithm for Fat Points on $\mathbf{P}^2
Let $F$ be a divisor on the blowup $X$ of $\pr^2$ at $r$ general
points $p_1, \dots, p_r$ and let $L$ be the total transform of a
line on $\pr^2$. An approach is presented for reducing the
computation of the dimension of the cokernel of the natural map
$\mu_F \colon \Gamma \bigl( \CO_X(F) \bigr) \otimes \Gamma \bigl(
\CO_X(L) \bigr) \to \Gamma \bigl( \CO_X(F) \otimes \CO_X(L) \bigr)$
to the case that $F$ is ample. As an application, a formula for
the dimension of the cokernel of $\mu_F$ is obtained when $r = 7$,
completely solving the problem of determining the modules in
minimal free resolutions of fat point subschemes\break
$m_1 p_1 + \cdots + m_7 p_7 \subset \pr^2$. All results hold for
an arbitrary algebraically closed ground field~$k$.
Keywords:Generators, syzygies, resolution, fat points, maximal rank, plane, Weyl group Categories:13P10, 14C99, 13D02, 13H15 
