1. CJM Online first
 Pan, Ivan Edgardo; Simis, Aron

Cremona Maps of de JonquiÃ¨res Type
This paper is concerned with suitable generalizations of a plane de
JonquiÃ¨res map to higher dimensional space
$\mathbb{P}^n$ with $n\geq 3$.
For each given point of $\mathbb{P}^n$ there is a subgroup of the entire
Cremona group of dimension $n$
consisting of such maps.
One studies both geometric and grouptheoretical properties of this notion.
In the case where $n=3$ one describes an explicit set of generators of
the group and gives a homological characterization
of a basic subgroup thereof.
Keywords:Cremona map, de JonquiÃ¨res map, Cremona group, minimal free resolution Categories:14E05, 13D02, 13H10, 14E07, 14M05, 14M25 

2. CJM 2007 (vol 59 pp. 109)
 Jayanthan, A. V.; Puthenpurakal, Tony J.; Verma, J. K.

On Fiber Cones of $\m$Primary Ideals
Two formulas for the multiplicity of the fiber cone
$F(I)=\bigoplus_{n=0}^{\infty} I^n/\m I^n$ of an $\m$primary ideal of
a $d$dimensional CohenMacaulay local ring $(R,\m)$ are derived in
terms of the mixed multiplicity $e_{d1}(\m  I)$, the multiplicity
$e(I)$, and superficial elements. As a consequence, the
CohenMacaulay property of $F(I)$ when $I$ has minimal mixed
multiplicity or almost minimal mixed multiplicity is characterized
in terms of the reduction number of $I$ and lengths of certain ideals.
We also characterize the CohenMacaulay and Gorenstein properties of
fiber cones of $\m$primary ideals with a $d$generated minimal
reduction $J$ satisfying $\ell(I^2/JI)=1$ or
$\ell(I\m/J\m)=1.$
Keywords:fiber cones, mixed multiplicities, joint reductions, CohenMacaulay fiber cones, Gorenstein fiber cones, ideals having minimal and almost minimal mixed multiplicities Categories:13H10, 13H15, 13A30, 13C15, 13A02 

3. CJM 2004 (vol 56 pp. 716)
 Guardo, Elena; Van Tuyl, Adam

Fat Points in $\mathbb{P}^1 \times \mathbb{P}^1$ and Their Hilbert Functions
We study the Hilbert functions of fat points in $\popo$.
If $Z \subseteq \popo$ is an arbitrary fat point scheme, then
it can be shown that for every $i$ and $j$ the values of the Hilbert
function $_{Z}(l,j)$ and $H_{Z}(i,l)$ eventually become constant for
$l \gg 0$. We show how to determine these eventual values
by using only the multiplicities of the points, and the
relative positions of the points in $\popo$. This enables
us to compute all but a finite number values of $H_{Z}$
without using the coordinates of points.
We also characterize the ACM fat point schemes
sing our description of the eventual behaviour. In fact,
n the case that $Z \subseteq \popo$ is ACM, then
the entire Hilbert function and its minimal free resolution
depend solely on knowing the eventual values of the Hilbert function.
Keywords:Hilbert function, points, fat points, CohenMacaulay, multiprojective space Categories:13D40, 13D02, 13H10, 14A15 

4. CJM 2002 (vol 54 pp. 1319)
 Yekutieli, Amnon

The Continuous Hochschild Cochain Complex of a Scheme
Let $X$ be a separated finite type scheme over a noetherian base ring
$\mathbb{K}$. There is a complex $\widehat{\mathcal{C}}^{\cdot} (X)$
of topological $\mathcal{O}_X$modules, called the complete Hochschild
chain complex of $X$. To any $\mathcal{O}_X$module
$\mathcal{M}$not necessarily quasicoherentwe assign the complex
$\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr)$ of continuous
Hochschild cochains with values in $\mathcal{M}$. Our first main
result is that when $X$ is smooth over $\mathbb{K}$ there is a
functorial isomorphism
$$
\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr) \cong \R
\mathcal{H}om_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M})
$$
in the derived category $\mathsf{D} (\Mod \mathcal{O}_{X^2})$, where
$X^2 := X \times_{\mathbb{K}} X$.
The second main result is that if $X$ is smooth of relative dimension
$n$ and $n!$ is invertible in $\mathbb{K}$, then the standard maps
$\pi \colon \widehat{\mathcal{C}}^{q} (X) \to \Omega^q_{X/
\mathbb{K}}$ induce a quasiisomorphism
$$
\mathcal{H}om_{\mathcal{O}_X} \Bigl( \bigoplus_q \Omega^q_{X/
\mathbb{K}} [q], \mathcal{M} \Bigr) \to
\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr).
$$
When $\mathcal{M} = \mathcal{O}_X$ this is the quasiisomorphism
underlying the Kontsevich Formality Theorem.
Combining the two results above we deduce a decomposition of the
global Hochschild cohomology
$$
\Ext^i_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) \cong
\bigoplus_q \H^{iq} \Bigl( X, \bigl( \bigwedge^q_{\mathcal{O}_X}
\mathcal{T}_{X/\mathbb{K}} \bigr) \otimes_{\mathcal{O}_X} \mathcal{M}
\Bigr),
$$
where $\mathcal{T}_{X/\mathbb{K}}$ is the relative tangent sheaf.
Keywords:Hochschild cohomology, schemes, derived categories Categories:16E40, 14F10, 18G10, 13H10 

5. CJM 1997 (vol 49 pp. 499)
 Fitzgerald, Robert W.

Gorenstein Witt rings II
The abstract Witt rings which are Gorenstein have been classified
when the dimension is one and the classification problem for those of
dimension zero has been reduced to the case of socle degree three. Here we
classifiy the Gorenstein Witt rings of fields with dimension zero and
socle degree three. They are of elementary type.
Categories:11E81, 13H10 
