Search results
Search: MSC category 13F20
( Polynomial rings and ideals; rings of integervalued polynomials [See also 11C08, 13B25] )
1. CJM 2012 (vol 65 pp. 823)
 Guardo, Elena; Harbourne, Brian; Van Tuyl, Adam

Symbolic Powers Versus Regular Powers of Ideals of General Points in $\mathbb{P}^1 \times \mathbb{P}^1$
Recent work of EinLazarsfeldSmith and HochsterHuneke
raised the problem of which symbolic powers of an ideal
are contained in a given ordinary power of the ideal.
BocciHarbourne developed methods to address this problem,
which involve asymptotic numerical characters of
symbolic powers of the ideals. Most of the work
done up to now has been done for ideals defining 0dimensional
subschemes of projective space.
Here we focus on certain subschemes given by
a union of lines in $\mathbb{P}^3$ which can also be viewed
as points in $\mathbb{P}^1 \times \mathbb{P}^1$.
We also obtain results on the
closely related problem, studied by Hochster and by LiSwanson, of
determining situations for which
each symbolic power of an ideal is an ordinary power.
Keywords:symbolic powers, multigraded, points Categories:13F20, 13A15, 14C20 
