Expand all Collapse all | Results 26 - 35 of 35 |
26. CJM 2003 (vol 55 pp. 750)
Almost-Free $E$-Rings of Cardinality $\aleph_1$ An $E$-ring is a unital ring $R$ such that every endomorphism of
the underlying abelian group $R^+$ is multiplication by some
ring element. The existence of almost-free $E$-rings of
cardinality greater than $2^{\aleph_0}$ is undecidable in $\ZFC$.
While they exist in G\"odel's universe, they do not exist in other
models of set theory. For a regular cardinal $\aleph_1 \leq
\lambda \leq 2^{\aleph_0}$ we construct $E$-rings of cardinality
$\lambda$ in $\ZFC$ which have $\aleph_1$-free additive structure.
For $\lambda=\aleph_1$ we therefore obtain the existence of
almost-free $E$-rings of cardinality $\aleph_1$ in $\ZFC$.
Keywords:$E$-rings, almost-free modules Categories:20K20, 20K30, 13B10, 13B25 |
27. CJM 2002 (vol 54 pp. 1319)
The Continuous Hochschild Cochain Complex of a Scheme Let $X$ be a separated finite type scheme over a noetherian base ring
$\mathbb{K}$. There is a complex $\widehat{\mathcal{C}}^{\cdot} (X)$
of topological $\mathcal{O}_X$-modules, called the complete Hochschild
chain complex of $X$. To any $\mathcal{O}_X$-module
$\mathcal{M}$---not necessarily quasi-coherent---we assign the complex
$\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr)$ of continuous
Hochschild cochains with values in $\mathcal{M}$. Our first main
result is that when $X$ is smooth over $\mathbb{K}$ there is a
functorial isomorphism
$$
\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr) \cong \R
\mathcal{H}om_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M})
$$
in the derived category $\mathsf{D} (\Mod \mathcal{O}_{X^2})$, where
$X^2 := X \times_{\mathbb{K}} X$.
The second main result is that if $X$ is smooth of relative dimension
$n$ and $n!$ is invertible in $\mathbb{K}$, then the standard maps
$\pi \colon \widehat{\mathcal{C}}^{-q} (X) \to \Omega^q_{X/
\mathbb{K}}$ induce a quasi-isomorphism
$$
\mathcal{H}om_{\mathcal{O}_X} \Bigl( \bigoplus_q \Omega^q_{X/
\mathbb{K}} [q], \mathcal{M} \Bigr) \to
\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr).
$$
When $\mathcal{M} = \mathcal{O}_X$ this is the quasi-isomorphism
underlying the Kontsevich Formality Theorem.
Combining the two results above we deduce a decomposition of the
global Hochschild cohomology
$$
\Ext^i_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) \cong
\bigoplus_q \H^{i-q} \Bigl( X, \bigl( \bigwedge^q_{\mathcal{O}_X}
\mathcal{T}_{X/\mathbb{K}} \bigr) \otimes_{\mathcal{O}_X} \mathcal{M}
\Bigr),
$$
where $\mathcal{T}_{X/\mathbb{K}}$ is the relative tangent sheaf.
Keywords:Hochschild cohomology, schemes, derived categories Categories:16E40, 14F10, 18G10, 13H10 |
28. CJM 2002 (vol 54 pp. 1100)
The Operator Biprojectivity of the Fourier Algebra In this paper, we investigate projectivity in the category of operator
spaces. In particular, we show that the Fourier algebra of a locally
compact group $G$ is operator biprojective if and only if $G$ is
discrete.
Keywords:locally compact group, Fourier algebra, operator space, projective Categories:13D03, 18G25, 43A95, 46L07, 22D99 |
29. CJM 2002 (vol 54 pp. 897)
The Valuative Theory of Foliations This paper gives a characterization of valuations that follow the
singular infinitely near points of plane vector fields, using the
notion of L'H\^opital valuation, which generalizes a well known classical
condition. With that tool, we give a valuative description of vector
fields with infinite solutions, singularities with rational quotient
of eigenvalues in its linear part, and polynomial vector fields with
transcendental solutions, among other results.
Categories:12J20, 13F30, 16W60, 37F75, 34M25 |
30. CJM 2001 (vol 53 pp. 923)
Decompositions of the Hilbert Function of a Set of Points in $\P^n$ Let $\H$ be the Hilbert function of some set of distinct points
in $\P^n$ and let $\alpha = \alpha (\H)$ be the least degree
of a hypersurface of $\P^n$ containing these points. Write $\alpha
= d_s + d_{s-1} + \cdots + d_1$ (where $d_i > 0$). We canonically
decompose $\H$ into $s$ other Hilbert functions $\H
\leftrightarrow (\H_s^\prime, \dots, \H_1^\prime)$ and show
how to find sets of distinct points $\Y_s, \dots, \Y_1$,
lying on reduced hypersurfaces of degrees $d_s, \dots, d_1$
(respectively) such that the Hilbert function of $\Y_i$ is
$\H_i^\prime$ and the Hilbert function of $\Y = \bigcup_{i=1}^s
\Y_i$ is $\H$. Some extremal properties of this canonical
decomposition are also explored.
Categories:13D40, 14M10 |
31. CJM 2000 (vol 52 pp. 123)
An Algorithm for Fat Points on $\mathbf{P}^2 Let $F$ be a divisor on the blow-up $X$ of $\pr^2$ at $r$ general
points $p_1, \dots, p_r$ and let $L$ be the total transform of a
line on $\pr^2$. An approach is presented for reducing the
computation of the dimension of the cokernel of the natural map
$\mu_F \colon \Gamma \bigl( \CO_X(F) \bigr) \otimes \Gamma \bigl(
\CO_X(L) \bigr) \to \Gamma \bigl( \CO_X(F) \otimes \CO_X(L) \bigr)$
to the case that $F$ is ample. As an application, a formula for
the dimension of the cokernel of $\mu_F$ is obtained when $r = 7$,
completely solving the problem of determining the modules in
minimal free resolutions of fat point subschemes\break
$m_1 p_1 + \cdots + m_7 p_7 \subset \pr^2$. All results hold for
an arbitrary algebraically closed ground field~$k$.
Keywords:Generators, syzygies, resolution, fat points, maximal rank, plane, Weyl group Categories:13P10, 14C99, 13D02, 13H15 |
32. CJM 1999 (vol 51 pp. 616)
Parabolic Subgroups with Abelian Unipotent Radical as a Testing Site for Invariant Theory Let $L$ be a simple algebraic group and $P$ a parabolic subgroup
with Abelian unipotent radical $P^u$. Many familiar varieties
(determinantal varieties, their symmetric and skew-symmetric
analogues) arise as closures of $P$-orbits in $P^u$. We give a
unified invariant-theoretic treatment of various properties of
these orbit closures. We also describe the closures of the
conormal bundles of these orbits as the irreducible components of
some commuting variety and show that the polynomial algebra
$k[P^u]$ is a free module over the algebra of covariants.
Categories:14L30, 13A50 |
33. CJM 1999 (vol 51 pp. 3)
On a Conjecture of Goresky, Kottwitz and MacPherson We settle a conjecture of Goresky, Kottwitz and MacPherson related
to Koszul duality, \ie, to the correspondence between differential
graded modules over the exterior algebra and those over the
symmetric algebra.
Keywords:Koszul duality, Hirsch-Brown model Categories:13D25, 18E30, 18G35, 55U15 |
34. CJM 1998 (vol 50 pp. 719)
Indecomposable almost free modules---the local case Let $R$ be a countable, principal ideal domain which is not a field and
$A$ be a countable $R$-algebra which is free as an $R$-module. Then we
will construct an $\aleph_1$-free $R$-module $G$ of rank $\aleph_1$
with endomorphism algebra End$_RG = A$. Clearly the result does not
hold for fields. Recall that an $R$-module is $\aleph_1$-free if all
its countable submodules are free, a condition closely related to
Pontryagin's theorem. This result has many consequences, depending on
the algebra $A$ in use. For instance, if we choose $A = R$, then
clearly $G$ is an indecomposable `almost free' module. The existence of
such modules was unknown for rings with only finitely many primes like
$R = \hbox{\Bbbvii Z}_{(p)}$, the integers localized at some prime $p$. The result
complements a classical realization theorem of Corner's showing that
any such algebra is an endomorphism algebra of some torsion-free,
reduced $R$-module $G$ of countable rank. Its proof is based on new
combinatorial-algebraic techniques related with what we call {\it rigid
tree-elements\/} coming from a module generated over a forest of trees.
Keywords:indecomposable modules of local rings, $\aleph_1$-free modules of rank $\aleph_1$, realizing rings as endomorphism rings Categories:20K20, 20K26, 20K30, 13C10 |
35. CJM 1997 (vol 49 pp. 499)
Gorenstein Witt rings II The abstract Witt rings which are Gorenstein have been classified
when the dimension is one and the classification problem for those of
dimension zero has been reduced to the case of socle degree three. Here we
classifiy the Gorenstein Witt rings of fields with dimension zero and
socle degree three. They are of elementary type.
Categories:11E81, 13H10 |