CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 13 ( Commutative rings and algebras )

  Expand all        Collapse all Results 26 - 35 of 35

26. CJM 2003 (vol 55 pp. 750)

Göbel, Rüdiger; Shelah, Saharon; Strüngmann, Lutz
Almost-Free $E$-Rings of Cardinality $\aleph_1$
An $E$-ring is a unital ring $R$ such that every endomorphism of the underlying abelian group $R^+$ is multiplication by some ring element. The existence of almost-free $E$-rings of cardinality greater than $2^{\aleph_0}$ is undecidable in $\ZFC$. While they exist in G\"odel's universe, they do not exist in other models of set theory. For a regular cardinal $\aleph_1 \leq \lambda \leq 2^{\aleph_0}$ we construct $E$-rings of cardinality $\lambda$ in $\ZFC$ which have $\aleph_1$-free additive structure. For $\lambda=\aleph_1$ we therefore obtain the existence of almost-free $E$-rings of cardinality $\aleph_1$ in $\ZFC$.

Keywords:$E$-rings, almost-free modules
Categories:20K20, 20K30, 13B10, 13B25

27. CJM 2002 (vol 54 pp. 1319)

Yekutieli, Amnon
The Continuous Hochschild Cochain Complex of a Scheme
Let $X$ be a separated finite type scheme over a noetherian base ring $\mathbb{K}$. There is a complex $\widehat{\mathcal{C}}^{\cdot} (X)$ of topological $\mathcal{O}_X$-modules, called the complete Hochschild chain complex of $X$. To any $\mathcal{O}_X$-module $\mathcal{M}$---not necessarily quasi-coherent---we assign the complex $\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr)$ of continuous Hochschild cochains with values in $\mathcal{M}$. Our first main result is that when $X$ is smooth over $\mathbb{K}$ there is a functorial isomorphism $$ \mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr) \cong \R \mathcal{H}om_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) $$ in the derived category $\mathsf{D} (\Mod \mathcal{O}_{X^2})$, where $X^2 := X \times_{\mathbb{K}} X$. The second main result is that if $X$ is smooth of relative dimension $n$ and $n!$ is invertible in $\mathbb{K}$, then the standard maps $\pi \colon \widehat{\mathcal{C}}^{-q} (X) \to \Omega^q_{X/ \mathbb{K}}$ induce a quasi-isomorphism $$ \mathcal{H}om_{\mathcal{O}_X} \Bigl( \bigoplus_q \Omega^q_{X/ \mathbb{K}} [q], \mathcal{M} \Bigr) \to \mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl( \widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr). $$ When $\mathcal{M} = \mathcal{O}_X$ this is the quasi-isomorphism underlying the Kontsevich Formality Theorem. Combining the two results above we deduce a decomposition of the global Hochschild cohomology $$ \Ext^i_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) \cong \bigoplus_q \H^{i-q} \Bigl( X, \bigl( \bigwedge^q_{\mathcal{O}_X} \mathcal{T}_{X/\mathbb{K}} \bigr) \otimes_{\mathcal{O}_X} \mathcal{M} \Bigr), $$ where $\mathcal{T}_{X/\mathbb{K}}$ is the relative tangent sheaf.

Keywords:Hochschild cohomology, schemes, derived categories
Categories:16E40, 14F10, 18G10, 13H10

28. CJM 2002 (vol 54 pp. 1100)

Wood, Peter J.
The Operator Biprojectivity of the Fourier Algebra
In this paper, we investigate projectivity in the category of operator spaces. In particular, we show that the Fourier algebra of a locally compact group $G$ is operator biprojective if and only if $G$ is discrete.

Keywords:locally compact group, Fourier algebra, operator space, projective
Categories:13D03, 18G25, 43A95, 46L07, 22D99

29. CJM 2002 (vol 54 pp. 897)

Fortuny Ayuso, Pedro
The Valuative Theory of Foliations
This paper gives a characterization of valuations that follow the singular infinitely near points of plane vector fields, using the notion of L'H\^opital valuation, which generalizes a well known classical condition. With that tool, we give a valuative description of vector fields with infinite solutions, singularities with rational quotient of eigenvalues in its linear part, and polynomial vector fields with transcendental solutions, among other results.

Categories:12J20, 13F30, 16W60, 37F75, 34M25

30. CJM 2001 (vol 53 pp. 923)

Geramita, Anthony V.; Harima, Tadahito; Shin, Yong Su
Decompositions of the Hilbert Function of a Set of Points in $\P^n$
Let $\H$ be the Hilbert function of some set of distinct points in $\P^n$ and let $\alpha = \alpha (\H)$ be the least degree of a hypersurface of $\P^n$ containing these points. Write $\alpha = d_s + d_{s-1} + \cdots + d_1$ (where $d_i > 0$). We canonically decompose $\H$ into $s$ other Hilbert functions $\H \leftrightarrow (\H_s^\prime, \dots, \H_1^\prime)$ and show how to find sets of distinct points $\Y_s, \dots, \Y_1$, lying on reduced hypersurfaces of degrees $d_s, \dots, d_1$ (respectively) such that the Hilbert function of $\Y_i$ is $\H_i^\prime$ and the Hilbert function of $\Y = \bigcup_{i=1}^s \Y_i$ is $\H$. Some extremal properties of this canonical decomposition are also explored.

Categories:13D40, 14M10

31. CJM 2000 (vol 52 pp. 123)

Harbourne, Brian
An Algorithm for Fat Points on $\mathbf{P}^2
Let $F$ be a divisor on the blow-up $X$ of $\pr^2$ at $r$ general points $p_1, \dots, p_r$ and let $L$ be the total transform of a line on $\pr^2$. An approach is presented for reducing the computation of the dimension of the cokernel of the natural map $\mu_F \colon \Gamma \bigl( \CO_X(F) \bigr) \otimes \Gamma \bigl( \CO_X(L) \bigr) \to \Gamma \bigl( \CO_X(F) \otimes \CO_X(L) \bigr)$ to the case that $F$ is ample. As an application, a formula for the dimension of the cokernel of $\mu_F$ is obtained when $r = 7$, completely solving the problem of determining the modules in minimal free resolutions of fat point subschemes\break $m_1 p_1 + \cdots + m_7 p_7 \subset \pr^2$. All results hold for an arbitrary algebraically closed ground field~$k$.

Keywords:Generators, syzygies, resolution, fat points, maximal rank, plane, Weyl group
Categories:13P10, 14C99, 13D02, 13H15

32. CJM 1999 (vol 51 pp. 616)

Panyushev, Dmitri I.
Parabolic Subgroups with Abelian Unipotent Radical as a Testing Site for Invariant Theory
Let $L$ be a simple algebraic group and $P$ a parabolic subgroup with Abelian unipotent radical $P^u$. Many familiar varieties (determinantal varieties, their symmetric and skew-symmetric analogues) arise as closures of $P$-orbits in $P^u$. We give a unified invariant-theoretic treatment of various properties of these orbit closures. We also describe the closures of the conormal bundles of these orbits as the irreducible components of some commuting variety and show that the polynomial algebra $k[P^u]$ is a free module over the algebra of covariants.

Categories:14L30, 13A50

33. CJM 1999 (vol 51 pp. 3)

Allday, C.; Puppe, V.
On a Conjecture of Goresky, Kottwitz and MacPherson
We settle a conjecture of Goresky, Kottwitz and MacPherson related to Koszul duality, \ie, to the correspondence between differential graded modules over the exterior algebra and those over the symmetric algebra.

Keywords:Koszul duality, Hirsch-Brown model
Categories:13D25, 18E30, 18G35, 55U15

34. CJM 1998 (vol 50 pp. 719)

Göbel, Rüdiger; Shelah, Saharon
Indecomposable almost free modules---the local case
Let $R$ be a countable, principal ideal domain which is not a field and $A$ be a countable $R$-algebra which is free as an $R$-module. Then we will construct an $\aleph_1$-free $R$-module $G$ of rank $\aleph_1$ with endomorphism algebra End$_RG = A$. Clearly the result does not hold for fields. Recall that an $R$-module is $\aleph_1$-free if all its countable submodules are free, a condition closely related to Pontryagin's theorem. This result has many consequences, depending on the algebra $A$ in use. For instance, if we choose $A = R$, then clearly $G$ is an indecomposable `almost free' module. The existence of such modules was unknown for rings with only finitely many primes like $R = \hbox{\Bbbvii Z}_{(p)}$, the integers localized at some prime $p$. The result complements a classical realization theorem of Corner's showing that any such algebra is an endomorphism algebra of some torsion-free, reduced $R$-module $G$ of countable rank. Its proof is based on new combinatorial-algebraic techniques related with what we call {\it rigid tree-elements\/} coming from a module generated over a forest of trees.

Keywords:indecomposable modules of local rings, $\aleph_1$-free modules of rank $\aleph_1$, realizing rings as endomorphism rings
Categories:20K20, 20K26, 20K30, 13C10

35. CJM 1997 (vol 49 pp. 499)

Fitzgerald, Robert W.
Gorenstein Witt rings II
The abstract Witt rings which are Gorenstein have been classified when the dimension is one and the classification problem for those of dimension zero has been reduced to the case of socle degree three. Here we classifiy the Gorenstein Witt rings of fields with dimension zero and socle degree three. They are of elementary type.

Categories:11E81, 13H10
Page
   1 2    

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/