Expand all Collapse all | Results 1 - 4 of 4 |
1. CJM Online first
Faithfulness of Actions on Riemann-Roch Spaces Given a faithful action of a finite group $G$ on an algebraic
curve~$X$ of genus $g_X\geq 2$, we give explicit criteria for
the induced action of~$G$ on the Riemann-Roch space~$H^0(X,\mathcal{O}_X(D))$
to be faithful, where $D$ is a $G$-invariant divisor on $X$ of
degree at least~$2g_X-2$. This leads to a concise answer to the
question when the action of~$G$ on the space~$H^0(X, \Omega_X^{\otimes
m})$ of global holomorphic polydifferentials of order $m$ is
faithful. If $X$ is hyperelliptic, we furthermore provide an
explicit basis of~$H^0(X, \Omega_X^{\otimes m})$. Finally, we
give applications in deformation theory and in coding theory
and we discuss the analogous problem for the action of~$G$ on
the first homology $H_1(X, \mathbb{Z}/m\mathbb{Z})$ if $X$ is a Riemann surface.
Keywords:faithful action, Riemann-Roch space, polydifferential, hyperelliptic curve, equivariant deformation theory, Goppa code, homology Categories:14H30, 30F30, 14L30, 14D15, 11R32 |
2. CJM 2004 (vol 56 pp. 71)
Euclidean Rings of Algebraic Integers Let $K$ be a finite Galois extension of the field of rational numbers
with unit rank greater than~3. We prove that the ring of integers of
$K$ is a Euclidean domain if and only if it is a principal ideal
domain. This was previously known under the assumption of the
generalized Riemann hypothesis for Dedekind zeta functions. We now
prove this unconditionally.
Categories:11R04, 11R27, 11R32, 11R42, 11N36 |
3. CJM 2002 (vol 54 pp. 1202)
Octahedral Galois Representations Arising From $\mathbf{Q}$-Curves of Degree $2$ Generically, one can attach to a $\mathbf{Q}$-curve $C$ octahedral representations
$\rho\colon\Gal(\bar{\mathbf{Q}}/\mathbf{Q})\rightarrow\GL_2(\bar\mathbf{F}_3)$
coming from the Galois action on the $3$-torsion of those abelian varieties of
$\GL_2$-type whose building block is $C$. When $C$ is defined over a quadratic
field and has an isogeny of degree $2$ to its Galois conjugate, there exist
such representations $\rho$ having image into $\GL_2(\mathbf{F}_9)$. Going
the other way, we can ask which $\mod 3$ octahedral representations $\rho$ of
$\Gal(\bar\mathbf{Q}/\mathbf{Q})$ arise from $\mathbf{Q}$-curves in the above
sense. We characterize those arising from quadratic $\mathbf{Q}$-curves of
degree $2$. The approach makes use of Galois embedding techniques in
$\GL_2(\mathbf{F}_9)$, and the characterization can be given in terms of a
quartic polynomial defining the $\mathcal{S}_4$-extension of $\mathbf{Q}$
corresponding to the projective representation $\bar{\rho}$.
Categories:11G05, 11G10, 11R32 |
4. CJM 2001 (vol 53 pp. 449)
Descending Rational Points on Elliptic Curves to Smaller Fields In this paper, we study the Mordell-Weil group of an elliptic curve
as a Galois module. We consider an elliptic curve $E$ defined over a
number field $K$ whose Mordell-Weil rank over a Galois extension $F$ is
$1$, $2$ or $3$. We show that $E$ acquires a point (points) of
infinite order over a field whose Galois group is one of $C_n \times C_m$
($n= 1, 2, 3, 4, 6, m= 1, 2$), $D_n \times C_m$ ($n= 2, 3, 4, 6, m= 1, 2$),
$A_4 \times C_m$ ($m=1,2$), $S_4 \times C_m$ ($m=1,2$). Next, we consider
the case where $E$ has complex multiplication by the ring of integers $\o$
of an imaginary quadratic field $\k$ contained in $K$. Suppose that the
$\o$-rank over a Galois extension $F$ is $1$ or $2$. If $\k\neq\Q(\sqrt{-1})$
and $\Q(\sqrt{-3})$ and $h_{\k}$ (class number of $\k$) is odd, we show that
$E$ acquires positive $\o$-rank over a cyclic extension of $K$ or over a
field whose Galois group is one of $\SL_2(\Z/3\Z)$, an extension of
$\SL_2(\Z/3\Z)$ by $\Z/2\Z$, or a central extension by the dihedral group.
Finally, we discuss the relation of the above results to the vanishing of
$L$-functions.
Categories:11G05, 11G40, 11R32, 11R33 |