CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11R09 ( Polynomials (irreducibility, etc.) )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM Online first

Borwein, Peter; Choi, Stephen; Ferguson, Ron; Jankauskas, Jonas
On Littlewood Polynomials with Prescribed Number of Zeros Inside the Unit Disk
We investigate the numbers of complex zeros of Littlewood polynomials $p(z)$ (polynomials with coefficients $\{-1, 1\}$) inside or on the unit circle $|z|=1$, denoted by $N(p)$ and $U(p)$, respectively. Two types of Littlewood polynomials are considered: Littlewood polynomials with one sign change in the sequence of coefficients and Littlewood polynomials with one negative coefficient. We obtain explicit formulas for $N(p)$, $U(p)$ for polynomials $p(z)$ of these types. We show that, if $n+1$ is a prime number, then for each integer $k$, $0 \leq k \leq n-1$, there exists a Littlewood polynomial $p(z)$ of degree $n$ with $N(p)=k$ and $U(p)=0$. Furthermore, we describe some cases when the ratios $N(p)/n$ and $U(p)/n$ have limits as $n \to \infty$ and find the corresponding limit values.

Keywords:Littlewood polynomials, zeros, complex roots
Categories:11R06, 11R09, 11C08

2. CJM 2009 (vol 61 pp. 583)

Hajir, Farshid
Algebraic Properties of a Family of Generalized Laguerre Polynomials
We study the algebraic properties of Generalized Laguerre Polynomials for negative integral values of the parameter. For integers $r,n\geq 0$, we conjecture that $L_n^{(-1-n-r)}(x) = \sum_{j=0}^n \binom{n-j+r}{n-j}x^j/j!$ is a $\Q$-irreducible polynomial whose Galois group contains the alternating group on $n$ letters. That this is so for $r=n$ was conjectured in the 1950's by Grosswald and proven recently by Filaseta and Trifonov. It follows from recent work of Hajir and Wong that the conjecture is true when $r$ is large with respect to $n\geq 5$. Here we verify it in three situations: i) when $n$ is large with respect to $r$, ii) when $r \leq 8$, and iii) when $n\leq 4$. The main tool is the theory of $p$-adic Newton Polygons.

Categories:11R09, 05E35

© Canadian Mathematical Society, 2014 : https://cms.math.ca/