Expand all Collapse all | Results 1 - 5 of 5 |
1. CJM 2012 (vol 64 pp. 254)
Corrigendum to ``On $\mathbb{Z}$-modules of Algebraic Integers'' We fix a mistake in the proof of Theorem 1.6 in the paper in the title.
Keywords:Pisot numbers, algebraic integers, number rings, Schmidt subspace theorem Categories:11R04, 11R06 |
2. CJM 2009 (vol 61 pp. 264)
On $\BbZ$-Modules of Algebraic Integers Let $q$ be an algebraic integer of degree $d \geq 2$.
Consider the rank of the multiplicative subgroup of $\BbC^*$ generated
by the conjugates of $q$.
We say $q$ is of {\em full rank} if either the rank is $d-1$ and $q$
has norm $\pm 1$, or the rank is $d$.
In this paper we study some properties of $\BbZ[q]$ where $q$ is an
algebraic integer of full rank.
The special cases of when $q$ is a Pisot number and when $q$ is a Pisot-cyclotomic number
are also studied.
There are four main results.
\begin{compactenum}[\rm(1)]
\item If $q$ is an algebraic integer of full rank and $n$ is a fixed positive
integer,
then there are only finitely many $m$ such that
$\disc\left(\BbZ[q^m]\right)=\disc\left(\BbZ[q^n]\right)$.
\item If $q$ and $r$ are algebraic integers of degree $d$ of full rank
and $\BbZ[q^n] = \BbZ[r^n]$ for
infinitely many $n$, then either $q = \omega r'$ or $q={\rm Norm}(r)^{2/d}\omega/r'$,
where
$r'$ is some conjugate of $r$ and $\omega$ is some root of unity.
\item Let $r$ be an algebraic integer of degree at most $3$.
Then there are at most $40$ Pisot numbers $q$ such that
$\BbZ[q] = \BbZ[r]$.
\item There are only finitely many Pisot-cyclotomic numbers of any fixed
order.
\end{compactenum}
Keywords:algebraic integers, Pisot numbers, full rank, discriminant Categories:11R04, 11R06 |
3. CJM 2008 (vol 60 pp. 1267)
Nonadjacent Radix-$\tau$ Expansions of Integers in Euclidean Imaginary Quadratic Number Fields In his seminal papers, Koblitz proposed curves
for cryptographic use. For fast operations on these curves,
these papers also
initiated a study of the radix-$\tau$ expansion of integers in the number
fields $\Q(\sqrt{-3})$ and $\Q(\sqrt{-7})$. The (window)
nonadjacent form of $\tau$-expansion of integers in
$\Q(\sqrt{-7})$ was first investigated by Solinas.
For integers in $\Q(\sqrt{-3})$, the nonadjacent form
and the window nonadjacent form of the $\tau$-expansion were
studied. These are used for efficient
point multiplications on Koblitz curves.
In this paper, we complete
the picture by producing the (window)
nonadjacent radix-$\tau$ expansions
for integers in all Euclidean imaginary quadratic number fields.
Keywords:algebraic integer, radix expression, window nonadjacent expansion, algorithm, point multiplication of elliptic curves, cryptography Categories:11A63, 11R04, 11Y16, 11Y40, 14G50 |
4. CJM 2004 (vol 56 pp. 55)
$\mathbb{Z}[\sqrt{14}]$ is Euclidean We provide the first unconditional proof that the ring $\mathbb{Z}
[\sqrt{14}]$ is a Euclidean domain. The proof is generalized to
other real quadratic fields and to cyclotomic extensions of
$\mathbb{Q}$. It is proved that if $K$ is a real quadratic field
(modulo the existence of two special primes of $K$) or if $K$ is a
cyclotomic extension of $\mathbb{Q}$ then:
\begin{center}
\emph{%
the ring of integers of $K$ is a Euclidean domain if and only if
it is a principal ideal domain.}
\end{center}
The proof is a modification of the proof of a theorem of Clark and
Murty giving a similar result when $K$ is a totally real extension of
degree at least three. The main changes are a new Motzkin-type lemma
and the addition of the large sieve to the argument. These changes
allow application of a powerful theorem due to Bombieri, Friedlander
and Iwaniec in order to obtain the result in the real quadratic case.
The modification also allows the completion of the classification of
cyclotomic extensions in terms of the Euclidean property.
Categories:11R04, 11R11 |
5. CJM 2004 (vol 56 pp. 71)
Euclidean Rings of Algebraic Integers Let $K$ be a finite Galois extension of the field of rational numbers
with unit rank greater than~3. We prove that the ring of integers of
$K$ is a Euclidean domain if and only if it is a principal ideal
domain. This was previously known under the assumption of the
generalized Riemann hypothesis for Dedekind zeta functions. We now
prove this unconditionally.
Categories:11R04, 11R27, 11R32, 11R42, 11N36 |