Expand all Collapse all | Results 1 - 9 of 9 |
1. CJM 2011 (vol 64 pp. 81)
Pseudoprime Reductions of Elliptic Curves
Let $E$ be an elliptic curve over $\mathbb Q$ without complex multiplication,
and for each prime
$p$ of good reduction, let $n_E(p) = | E(\mathbb F_p) |$. For any integer
$b$, we consider elliptic pseudoprimes to the base
$b$. More precisely, let $Q_{E,b}(x)$ be the number of primes $p \leq
x$ such that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$, and let $\pi_{E,
b}^{\operatorname{pseu}}(x)$ be the number of compositive $n_E(p)$ such
that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$ (also called
elliptic curve pseudoprimes). Motivated by cryptography applications,
we address the problem of finding upper bounds for
$Q_{E,b}(x)$ and $\pi_{E, b}^{\operatorname{pseu}}(x)$,
generalising some of the literature for the classical pseudoprimes
to this new setting.
Keywords:Rosser-Iwaniec sieve, group order of elliptic curves over finite fields, pseudoprimes Categories:11N36, 14H52 |
2. CJM 2009 (vol 62 pp. 582)
On the Distribution of Pseudopowers An x-pseudopower to base g is a positive integer that is not a power of g, yet is so modulo p for all primes $ple x$. We improve an upper bound for the least such number, due to E.~Bach, R.~Lukes, J.~Shallit, and H.~C.~Williams. The method is based on a combination of some bounds of exponential sums with new results about the average behaviour of the multiplicative order of g modulo prime numbers.
Categories:11A07, 11L07, 11N36 |
3. CJM 2009 (vol 61 pp. 1214)
Close Lattice Points on Circles We classify the sets of four lattice points that all lie on a
short arc of a circle that has its center at the origin;
specifically on arcs of length $tR^{1/3}$ on a circle of radius
$R$, for any given $t>0$. In particular we prove that any arc of
length $ (40 + \frac{40}3\sqrt{10} )^{1/3}R^{1/3}$ on a circle of
radius $R$, with $R>\sqrt{65}$, contains at most three lattice
points, whereas we give an explicit infinite family of $4$-tuples
of lattice points, $(\nu_{1,n},\nu_{2,n},\nu_{3,n},\nu_{4,n})$,
each of which lies on an arc of length $ (40 +
\frac{40}3\sqrt{10})^{\smash{1/3}}R_n^{\smash{1/3}}+o(1)$ on a circle of
radius $R_n$.
Category:11N36 |
4. CJM 2009 (vol 61 pp. 336)
The Large Sieve Inequality for the Exponential Sequence $\lambda^{[O(n^{15/14+o(1)})]}$ Modulo Primes |
The Large Sieve Inequality for the Exponential Sequence $\lambda^{[O(n^{15/14+o(1)})]}$ Modulo Primes Let $\lambda$ be a fixed integer exceeding $1$ and $s_n$ any
strictly increasing sequence of positive integers satisfying $s_n\le
n^{15/14+o(1)}.$ In this paper we give a version of the large sieve
inequality for the sequence $\lambda^{s_n}.$ In particular, we
obtain nontrivial estimates of the associated trigonometric sums
``on average" and establish equidistribution properties of the
numbers $\lambda^{s_n} , n\le p(\log p)^{2+\varepsilon}$,
modulo $p$ for most primes $p.$
Keywords:Large sieve, exponential sums Categories:11L07, 11N36 |
5. CJM 2005 (vol 57 pp. 1155)
The Square Sieve and the Lang--Trotter Conjecture Let $E$ be an elliptic curve defined over $\Q$ and without
complex multiplication. Let $K$ be a fixed imaginary quadratic field.
We find nontrivial upper bounds for the number of ordinary primes $p \leq x$
for which $\Q(\pi_p) = K$, where $\pi_p$ denotes the Frobenius endomorphism
of $E$ at $p$. More precisely, under a generalized Riemann hypothesis
we show that this number is $O_{E}(x^{\slfrac{17}{18}}\log x)$, and unconditionally
we show that this number is $O_{E, K}\bigl(\frac{x(\log \log x)^{\slfrac{13}{12}}}
{(\log x)^{\slfrac{25}{24}}}\bigr)$. We also prove that the number of imaginary quadratic
fields $K$, with $-\disc K \leq x$ and of the form $K = \Q(\pi_p)$, is
$\gg_E\log\log\log x$ for $x\geq x_0(E)$. These results represent progress towards
a 1976 Lang--Trotter conjecture.
Keywords:Elliptic curves modulo $p$; Lang--Trotter conjecture;, applications of sieve methods Categories:11G05, 11N36, 11R45 |
6. CJM 2005 (vol 57 pp. 298)
On the Waring--Goldbach Problem: Exceptional Sets for Sums of Cubes and Higher Powers We investigate exceptional sets in the Waring--Goldbach problem. For
example, in the cubic case, we show that all but
$O(N^{79/84+\epsilon})$ integers subject to the necessary local
conditions can be represented as the sum of five cubes of primes.
Furthermore, we develop a new device that leads easily to similar
estimates for exceptional sets for sums of fourth and higher powers of
primes.
Categories:11P32, 11L15, 11L20, 11N36, 11P55 |
7. CJM 2004 (vol 56 pp. 71)
Euclidean Rings of Algebraic Integers Let $K$ be a finite Galois extension of the field of rational numbers
with unit rank greater than~3. We prove that the ring of integers of
$K$ is a Euclidean domain if and only if it is a principal ideal
domain. This was previously known under the assumption of the
generalized Riemann hypothesis for Dedekind zeta functions. We now
prove this unconditionally.
Categories:11R04, 11R27, 11R32, 11R42, 11N36 |
8. CJM 2000 (vol 52 pp. 673)
Sums of Two Squares in Short Intervals Let $\calS$ denote the set of integers representable as a sum of two
squares. Since $\calS$ can be described as the unsifted elements of a
sieving process of positive dimension, it is to be expected that
$\calS$ has many properties in common with the set of prime numbers.
In this paper we exhibit ``unexpected irregularities'' in the
distribution of sums of two squares in short intervals, a phenomenon
analogous to that discovered by Maier, over a decade ago, in the
distribution of prime numbers. To be precise, we show that there are
infinitely many short intervals containing considerably more elements
of $\calS$ than expected, and infinitely many intervals containing
considerably fewer than expected.
Keywords:sums of two squares, sieves, short intervals, smooth numbers Categories:11N36, 11N37, 11N25 |
9. CJM 1998 (vol 50 pp. 465)
Six primes and an almost prime in four linear equations There are infinitely many triplets of primes $p,q,r$ such that the
arithmetic means of any two of them, ${p+q\over2}$, ${p+r\over2}$,
${q+r\over2}$ are also primes. We give an asymptotic formula for
the number of such triplets up to a limit. The more involved
problem of asking that in addition to the above the arithmetic mean
of all three of them, ${p+q+r\over3}$ is also prime seems to be out
of reach. We show by combining the Hardy-Littlewood method with the
sieve method that there are quite a few triplets for which six of
the seven entries are primes and the last is almost prime.}
Categories:11P32, 11N36 |