CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11N05 ( Distribution of primes )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM 2005 (vol 57 pp. 1080)

Pritsker, Igor E.
The Gelfond--Schnirelman Method in Prime Number Theory
The original Gelfond--Schnirelman method, proposed in 1936, uses polynomials with integer coefficients and small norms on $[0,1]$ to give a Chebyshev-type lower bound in prime number theory. We study a generalization of this method for polynomials in many variables. Our main result is a lower bound for the integral of Chebyshev's $\psi$-function, expressed in terms of the weighted capacity. This extends previous work of Nair and Chudnovsky, and connects the subject to the potential theory with external fields generated by polynomial-type weights. We also solve the corresponding potential theoretic problem, by finding the extremal measure and its support.

Keywords:distribution of prime numbers, polynomials, integer, coefficients, weighted transfinite diameter, weighted capacity, potentials
Categories:11N05, 31A15, 11C08

2. CJM 2001 (vol 53 pp. 414)

Rivat, Joël; Sargos, Patrick
Nombres premiers de la forme $\floor{n^c}$
For $c>1$ we denote by $\pi_c(x)$ the number of integers $n \leq x$ such that $\floor{n^c}$ is prime. In 1953, Piatetski-Shapiro has proved that $\pi_c(x) \sim \frac{x}{c\log x}$, $x \rightarrow +\infty$ holds for $c<12/11$. Many authors have extended this range, which measures our progress in exponential sums techniques. In this article we obtain $c < 1.16117\dots\;$.

Categories:11L07, 11L20, 11N05

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/