Expand all Collapse all | Results 1 - 3 of 3 |
1. CJM 2009 (vol 61 pp. 165)
Exponents of Diophantine Approximation in Dimension Two Let $\Theta=(\alpha,\beta)$ be a point in $\bR^2$, with $1,\alpha,
\beta$ linearly independent over $\bQ$. We attach to $\Theta$ a
quadruple $\Omega(\Theta)$ of exponents that measure the quality
of approximation to $\Theta$ both by rational points and by
rational lines. The two ``uniform'' components of $\Omega(\Theta)$
are related by an equation due to Jarn\'\i k, and the four
exponents satisfy two inequalities that refine Khintchine's
transference principle. Conversely, we show that for any quadruple
$\Omega$ fulfilling these necessary conditions, there exists
a point $\Theta\in \bR^2$ for which $\Omega(\Theta) =\Omega$.
Categories:11J13, 11J70 |
2. CJM 2007 (vol 59 pp. 503)
Cyclic Groups and the Three Distance Theorem We give a two dimensional extension of the three distance Theorem. Let
$\theta$ be in $\mathbf{R}^{2}$ and let $q$ be in $\mathbf{N}$. There exists a
triangulation of $\mathbf{R}^{2}$ invariant by $\mathbf{Z}^{2}$-translations,
whose set of vertices is $\mathbf{Z}^{2}+\{0,\theta,\dots,q\theta\}$, and whose
number of different triangles, up to translations, is bounded above by a
constant which does not depend on $\theta$ and $q$.
Categories:11J70, 11J71, 11J13 |
3. CJM 2002 (vol 54 pp. 1305)
Continued Fractions Associated with $\SL_3 (\mathbf{Z})$ and Units in Complex Cubic Fields Continued fractions associated with $\GL_3 (\mathbf{Z})$ are
introduced and applied to find fundamental units in a two-parameter
family of complex cubic fields.
Keywords:fundamental units, continued fractions, diophantine approximation, symmetric space Categories:11R27, 11J70, 11J13 |