CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11G40 ( $L$-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture [See also 14G10] )

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM 2012 (vol 65 pp. 403)

Van Order, Jeanine
On the Dihedral Main Conjectures of Iwasawa Theory for Hilbert Modular Eigenforms
We construct a bipartite Euler system in the sense of Howard for Hilbert modular eigenforms of parallel weight two over totally real fields, generalizing works of Bertolini-Darmon, Longo, Nekovar, Pollack-Weston and others. The construction has direct applications to Iwasawa main conjectures. For instance, it implies in many cases one divisibility of the associated dihedral or anticyclotomic main conjecture, at the same time reducing the other divisibility to a certain nonvanishing criterion for the associated $p$-adic $L$-functions. It also has applications to cyclotomic main conjectures for Hilbert modular forms over CM fields via the technique of Skinner and Urban.

Keywords:Iwasawa theory, Hilbert modular forms, abelian varieties
Categories:11G10, 11G18, 11G40

2. CJM 2011 (vol 64 pp. 1248)

Gärtner, Jérôme
Darmon's Points and Quaternionic Shimura Varieties
In this paper, we generalize a conjecture due to Darmon and Logan in an adelic setting. We study the relation between our construction and Kudla's works on cycles on orthogonal Shimura varieties. This relation allows us to conjecture a Gross-Kohnen-Zagier theorem for Darmon's points.

Keywords:elliptic curves, Stark-Heegner points, quaternionic Shimura varieties
Categories:11G05, 14G35, 11F67, 11G40

3. CJM 2011 (vol 64 pp. 588)

Nekovář, Jan
Level Raising and Anticyclotomic Selmer Groups for Hilbert Modular Forms of Weight Two
In this article we refine the method of Bertolini and Darmon and prove several finiteness results for anticyclotomic Selmer groups of Hilbert modular forms of parallel weight two.

Keywords:Hilbert modular forms, Selmer groups, Shimura curves
Categories:11G40, 11F41, 11G18

4. CJM 2011 (vol 64 pp. 151)

Miller, Steven J.; Wong, Siman
Moments of the Rank of Elliptic Curves
Fix an elliptic curve $E/\mathbb{Q}$ and assume the Riemann Hypothesis for the $L$-function $L(E_D, s)$ for every quadratic twist $E_D$ of $E$ by $D\in\mathbb{Z}$. We combine Weil's explicit formula with techniques of Heath-Brown to derive an asymptotic upper bound for the weighted moments of the analytic rank of $E_D$. We derive from this an upper bound for the density of low-lying zeros of $L(E_D, s)$ that is compatible with the random matrix models of Katz and Sarnak. We also show that for any unbounded increasing function $f$ on $\mathbb{R}$, the analytic rank and (assuming in addition the Birch and Swinnerton-Dyer conjecture) the number of integral points of $E_D$ are less than $f(D)$ for almost all $D$.

Keywords:elliptic curve, explicit formula, integral point, low-lying zeros, quadratic twist, rank
Categories:11G05, 11G40

5. CJM 2011 (vol 63 pp. 616)

Lee, Edward
A Modular Quintic Calabi-Yau Threefold of Level 55
In this note we search the parameter space of Horrocks-Mumford quintic threefolds and locate a Calabi-Yau threefold that is modular, in the sense that the $L$-function of its middle-dimensional cohomology is associated with a classical modular form of weight 4 and level 55.

Keywords: Calabi-Yau threefold, non-rigid Calabi-Yau threefold, two-dimensional Galois representation, modular variety, Horrocks-Mumford vector bundle
Categories:14J15, 11F23, 14J32, 11G40

6. CJM 2010 (vol 62 pp. 1155)

Young, Matthew P.
Moments of the Critical Values of Families of Elliptic Curves, with Applications
We make conjectures on the moments of the central values of the family of all elliptic curves and on the moments of the first derivative of the central values of a large family of positive rank curves. In both cases the order of magnitude is the same as that of the moments of the central values of an orthogonal family of $L$-functions. Notably, we predict that the critical values of all rank $1$ elliptic curves is logarithmically larger than the rank $1$ curves in the positive rank family. Furthermore, as arithmetical applications, we make a conjecture on the distribution of $a_p$'s amongst all rank $2$ elliptic curves and show how the Riemann hypothesis can be deduced from sufficient knowledge of the first moment of the positive rank family (based on an idea of Iwaniec)

Categories:11M41, 11G40, 11M26

7. CJM 2002 (vol 54 pp. 468)

Boyd, David W.; Rodriguez-Villegas, Fernando
Mahler's Measure and the Dilogarithm (I)
An explicit formula is derived for the logarithmic Mahler measure $m(P)$ of $P(x,y) = p(x)y - q(x)$, where $p(x)$ and $q(x)$ are cyclotomic. This is used to find many examples of such polynomials for which $m(P)$ is rationally related to the Dedekind zeta value $\zeta_F (2)$ for certain quadratic and quartic fields.

Categories:11G40, 11R06, 11Y35

8. CJM 2001 (vol 53 pp. 449)

Akbary, Amir; Murty, V. Kumar
Descending Rational Points on Elliptic Curves to Smaller Fields
In this paper, we study the Mordell-Weil group of an elliptic curve as a Galois module. We consider an elliptic curve $E$ defined over a number field $K$ whose Mordell-Weil rank over a Galois extension $F$ is $1$, $2$ or $3$. We show that $E$ acquires a point (points) of infinite order over a field whose Galois group is one of $C_n \times C_m$ ($n= 1, 2, 3, 4, 6, m= 1, 2$), $D_n \times C_m$ ($n= 2, 3, 4, 6, m= 1, 2$), $A_4 \times C_m$ ($m=1,2$), $S_4 \times C_m$ ($m=1,2$). Next, we consider the case where $E$ has complex multiplication by the ring of integers $\o$ of an imaginary quadratic field $\k$ contained in $K$. Suppose that the $\o$-rank over a Galois extension $F$ is $1$ or $2$. If $\k\neq\Q(\sqrt{-1})$ and $\Q(\sqrt{-3})$ and $h_{\k}$ (class number of $\k$) is odd, we show that $E$ acquires positive $\o$-rank over a cyclic extension of $K$ or over a field whose Galois group is one of $\SL_2(\Z/3\Z)$, an extension of $\SL_2(\Z/3\Z)$ by $\Z/2\Z$, or a central extension by the dihedral group. Finally, we discuss the relation of the above results to the vanishing of $L$-functions.

Categories:11G05, 11G40, 11R32, 11R33

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/