Search: MSC category 11F
( Discontinuous groups and automorphic forms [See also 11R39, 11S37, 14Gxx, 14Kxx, 22E50, 22E55, 30F35, 32Nxx] {For relations with quadratic forms, see 11E45} )
1. CJM Online first
2. CJM Online first
 Brasca, Riccardo

Eigenvarieties for cuspforms over PEL type Shimura varieties with dense ordinary locus
Let $p \gt 2$ be a prime and let $X$ be a compactified PEL Shimura
variety of type (A) or (C) such that $p$ is an unramified prime
for the PEL datum and such that the ordinary locus is dense in
the reduction of $X$. Using the geometric approach of Andreatta,
Iovita, Pilloni, and Stevens we define the notion of families
of overconvergent locally analytic $p$adic modular forms of
Iwahoric level for $X$. We show that the system of eigenvalues
of any finite slope cuspidal eigenform of Iwahoric level can
be deformed to a family of systems of eigenvalues living over
an open subset of the weight space. To prove these results, we
actually construct eigenvarieties of the expected dimension that
parameterize finite slope systems of eigenvalues appearing in
the space of families of cuspidal forms.
Keywords:$p$adic modular forms, eigenvarieties, PELtype Shimura varieties Categories:11F55, 11F33 

3. CJM Online first
 Sugiyama, Shingo; Tsuzuki, Masao

Existence of Hilbert cusp forms with nonvanishing $L$values
We develop a derivative version of the relative trace formula
on $\operatorname{PGL}(2)$ studied in our previous work,
and derive an asymptotic formula of an average of central values
(derivatives)
of automorphic $L$functions for Hilbert cusp forms.
As an application, we prove the existence of Hilbert cusp forms
with nonvanishing central values (derivatives)
such that the absolute degrees of their Hecke fields are arbitrarily
large.
Keywords:automorphic representations, relative trace formulas, central $L$values, derivatives of $L$functions Categories:11F67, 11F72 

4. CJM 2016 (vol 68 pp. 571)
 Gras, Georges

Les $\theta$rÃ©gulateurs locaux d'un nombre algÃ©brique : Conjectures $p$adiques
Let $K/\mathbb{Q}$ be Galois and let $\eta\in K^\times$ be such that
$\operatorname{Reg}_\infty (\eta) \ne 0$.
We define the local $\theta$regulators $\Delta_p^\theta(\eta)
\in \mathbb{F}_p$
for the $\mathbb{Q}_p\,$irreducible characters $\theta$ of
$G=\operatorname{Gal}(K/\mathbb{Q})$. A linear representation ${\mathcal L}^\theta\simeq \delta \,
V_\theta$ is associated with
$\Delta_p^\theta (\eta)$ whose nullity is equivalent to $\delta
\geq 1$.
Each $\Delta_p^\theta (\eta)$ yields $\operatorname{Reg}_p^\theta (\eta)$
modulo $p$ in the factorization
$\prod_{\theta}(\operatorname{Reg}_p^\theta (\eta))^{\varphi(1)}$ of
$\operatorname{Reg}_p^G (\eta) := \frac{ \operatorname{Reg}_p(\eta)}{p^{[K : \mathbb{Q}\,]}
}$ (normalized $p$adic regulator).
From $\operatorname{Prob}\big (\Delta_p^\theta(\eta) = 0 \ \& \ {\mathcal
L}^\theta \simeq \delta \, V_\theta\big )
\leq p^{ f \delta^2}$ ($f \geq 1$ is a residue degree) and the
BorelCantelli heuristic,
we conjecture that, for $p$ large enough, $\operatorname{Reg}_p^G (\eta)$
is a $p$adic unit or that
$p^{\varphi(1)} \parallel \operatorname{Reg}_p^G (\eta)$ (a single $\theta$
with $f=\delta=1$); this obstruction may be lifted assuming the
existence of a binomial probability law
confirmed through numerical studies
(groups $C_3$, $C_5$, $D_6$).
This conjecture would imply that, for all $p$ large enough,
Fermat quotients, normalized $p$adic
regulators are $p$adic units and that
number fields are $p$rational.
We recall some deep cohomological results that
may strengthen such conjectures.
Keywords:$p$adic regulators, LeopoldtJaulent conjecture, Frobenius group determinants, characters, Fermat quotient, Abelian $p$ramification, probabilistic number theory Categories:11F85, 11R04, 20C15, 11C20, 11R37, 11R27, 11Y40 

5. CJM 2016 (vol 68 pp. 422)
 Kohen, Daniel; Pacetti, Ariel

Heegner Points on Cartan Nonsplit Curves
Let $E/\mathbb{Q}$ be an elliptic curve of conductor
$N$, and
let $K$ be an imaginary quadratic field such that the root
number of
$E/K$ is $1$. Let $\mathscr{O}$ be an order in $K$ and assume that
there
exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$
is inert in
$\mathscr{O}$. Although there are no Heegner points on $X_0(N)$
attached to $\mathscr{O}$, in this article we construct such points on
Cartan nonsplit curves. In order to do that we
give a method to compute Fourier expansions for forms on Cartan
nonsplit curves, and prove that the constructed points form a
Heegner system as in the classical case.
Keywords:Cartan curves, Heegner points Categories:11G05, 11F30 

6. CJM 2015 (vol 68 pp. 179)
 Takeda, Shuichiro

Metaplectic Tensor Products for Automorphic Representation of $\widetilde{GL}(r)$
Let $M=\operatorname{GL}_{r_1}\times\cdots\times\operatorname{GL}_{r_k}\subseteq\operatorname{GL}_r$ be a Levi
subgroup of $\operatorname{GL}_r$, where $r=r_1+\cdots+r_k$, and $\widetilde{M}$ its metaplectic preimage
in the $n$fold metaplectic cover $\widetilde{\operatorname{GL}}_r$ of $\operatorname{GL}_r$. For automorphic
representations $\pi_1,\dots,\pi_k$ of $\widetilde{\operatorname{GL}}_{r_1}(\mathbb{A}),\dots,\widetilde{\operatorname{GL}}_{r_k}(\mathbb{A})$,
we construct (under a certain
technical assumption, which is always satisfied when $n=2$) an
automorphic representation $\pi$
of $\widetilde{M}(\mathbb{A})$ which can be considered as the ``tensor product'' of the
representations $\pi_1,\dots,\pi_k$. This is
the global analogue of the metaplectic tensor product
defined by P. Mezo in the sense that locally at each place $v$,
$\pi_v$ is equivalent to the local metaplectic tensor product of
$\pi_{1,v},\dots,\pi_{k,v}$ defined by Mezo. Then we show that if all
of $\pi_i$ are cuspidal (resp. squareintegrable modulo center), then
the metaplectic tensor product is cuspidal (resp. squareintegrable
modulo center). We also show that (both
locally and globally) the metaplectic tensor product behaves in the
expected way under the action of a Weyl group element, and show the
compatibility with parabolic inductions.
Keywords:automorphic forms, representations of covering groups Category:11F70 

7. CJM Online first
 Zydor, Michał

La variante infinitÃ©simale de la formule des traces de JacquetRallis pour les groupes unitaires
We establish an infinitesimal version of the
JacquetRallis trace formula for unitary groups.
Our formula is obtained by integrating a
truncated kernel Ã la Arthur.
It has a geometric side which is a
sum of distributions $J_{\mathfrak{o}}$ indexed by classes of
elements
of the Lie algebra of $U(n+1)$ stable by $U(n)$conjugation
as well as the "spectral side"
consisting of the Fourier transforms
of the aforementioned distributions.
We prove that the distributions $J_{\mathfrak{o}}$
are invariant and depend only on the choice of
the Haar measure on $U(n)(\mathbb{A})$.
For regular semisimple classes $\mathfrak{o}$, $J_{\mathfrak{o}}$
is
a relative orbital integral of JacquetRallis.
For classes $\mathfrak{o}$ called relatively regular semisimple,
we express $J_{\mathfrak{o}}$
in terms of relative orbital integrals regularised by means of
zÃªta functions.
Keywords:formule des traces relative Categories:11F70, 11F72 

8. CJM 2014 (vol 67 pp. 893)
9. CJM 2014 (vol 66 pp. 993)
 BeuzartPlessis, Raphaël

Expression d'un facteur epsilon de paire par une formule intÃ©grale
Let $E/F$ be a quadratic extension of $p$adic fields and
let $d$, $m$ be nonnegative integers of distinct parities. Fix
admissible irreducible tempered representations $\pi$ and $\sigma$ of
$GL_d(E)$ and $GL_m(E)$ respectively. We assume that $\pi$ and
$\sigma$ are conjugatedual. That is to say $\pi\simeq \pi^{\vee,c}$
and $\sigma\simeq \sigma^{\vee,c}$ where $c$ is the non trivial
$F$automorphism of $E$. This implies, we can extend $\pi$ to an
unitary representation $\tilde{\pi}$ of a nonconnected group
$GL_d(E)\rtimes \{1,\theta\}$. Define $\tilde{\sigma}$ the same
way. We state and prove an integral formula for
$\epsilon(1/2,\pi\times \sigma,\psi_E)$ involving the characters of
$\tilde{\pi}$ and $\tilde{\sigma}$. This formula is related to the
local GanGrossPrasad conjecture for unitary groups.
Keywords:epsilon factor, twisted groups Categories:22E50, 11F85 

10. CJM 2014 (vol 67 pp. 424)
 Samart, Detchat

Mahler Measures as Linear Combinations of $L$values of Multiple Modular Forms
We study the Mahler measures of certain families of Laurent
polynomials in two and three variables. Each of the known Mahler
measure formulas for these families involves $L$values of at most one
newform and/or at most one quadratic character. In this paper, we
show, either rigorously or numerically, that the Mahler measures of
some polynomials are related to $L$values of multiple newforms and
quadratic characters simultaneously. The results suggest that the
number of modular $L$values appearing in the formulas significantly
depends on the shape of the algebraic value of the parameter chosen
for each polynomial. As a consequence, we also obtain new formulas
relating special values of hypergeometric series evaluated at
algebraic numbers to special values of $L$functions.
Keywords:Mahler measures, EisensteinKronecker series, $L$functions, hypergeometric series Categories:11F67, 33C20 

11. CJM 2014 (vol 66 pp. 1078)
 Lanphier, Dominic; Skogman, Howard

Values of Twisted Tensor $L$functions of Automorphic Forms Over Imaginary Quadratic Fields
Let $K$ be a complex quadratic extension of $\mathbb{Q}$ and let $\mathbb{A}_K$
denote the adeles of $K$.
We find special values at all of the critical points of twisted
tensor $L$functions attached to cohomological cuspforms on $GL_2(\mathbb{A}_K)$,
and establish Galois equivariance of the values.
To investigate the values, we determine the archimedean factors
of a class of integral representations of these $L$functions,
thus proving a conjecture due to Ghate. We also investigate
analytic properties of these $L$functions, such as their functional
equations.
Keywords:twisted tensor $L$function, cuspform, hypergeometric series Categories:11F67, 11F37 

12. CJM 2013 (vol 67 pp. 214)
 Szpruch, Dani

Symmetric Genuine Spherical Whittaker Functions on $\overline{GSp_{2n}(F)}$
Let $F$ be a padic field of odd residual characteristic. Let
$\overline{GSp_{2n}(F)}$ and $\overline{Sp_{2n}(F)}$ be the metaplectic double covers of the general
symplectic group and the symplectic group attached to the $2n$
dimensional symplectic space over $F$. Let $\sigma$ be a genuine,
possibly reducible, unramified principal series representation of
$\overline{GSp_{2n}(F)}$. In these notes we give an explicit formulas for a spanning
set for the space of Spherical Whittaker functions attached to
$\sigma$. For odd $n$, and generically for even $n$, this spanning set
is a basis. The significant property of this set is that each of its
elements is unchanged under the action of the Weyl group of
$\overline{Sp_{2n}(F)}$.
If $n$ is odd then each element in the set has an equivariant property
that generalizes a uniqueness result of Gelbart, Howe and
PiatetskiShapiro. Using this symmetric set, we
construct a family of reducible genuine unramified principal series
representations which have more then one generic constituent. This
family contains all the reducible genuine unramified principal series
representations induced from a unitary data and exists only for $n$
even.
Keywords:metaplectic group, Casselman Shalika Formula Category:11F85 

13. CJM 2013 (vol 66 pp. 566)
 Choiy, Kwangho

Transfer of Plancherel Measures for Unitary Supercuspidal Representations between $p$adic Inner Forms
Let $F$ be a $p$adic field of characteristic $0$, and let $M$ be an $F$Levi subgroup of a connected reductive $F$split group such that $\Pi_{i=1}^{r} SL_{n_i} \subseteq M \subseteq \Pi_{i=1}^{r} GL_{n_i}$ for positive integers $r$ and $n_i$. We prove that the Plancherel measure for any unitary supercuspidal representation of $M(F)$ is identically transferred under the local JacquetLanglands type correspondence between $M$ and its $F$inner forms, assuming a working hypothesis that Plancherel measures are invariant on a certain set. This work extends the result of
MuiÄ and Savin (2000) for Siegel Levi subgroups of the groups $SO_{4n}$ and $Sp_{4n}$ under the local JacquetLanglands correspondence. It can be applied to a simply connected simple $F$group of type $E_6$ or $E_7$, and a connected reductive $F$group of type $A_{n}$, $B_{n}$, $C_n$ or $D_n$.
Keywords:Plancherel measure, inner form, local to global global argument, cuspidal automorphic representation, JacquetLanglands correspondence Categories:22E50, 11F70, 22E55, 22E35 

14. CJM 2012 (vol 66 pp. 170)
 Guitart, Xavier; Quer, Jordi

Modular Abelian Varieties Over Number Fields
The main result of this paper is a characterization of the abelian
varieties $B/K$ defined over Galois number fields with the
property that the $L$function $L(B/K;s)$ is a product of
$L$functions of nonCM newforms over $\mathbb Q$ for congruence
subgroups of the form $\Gamma_1(N)$. The characterization involves the
structure of $\operatorname{End}(B)$, isogenies between the Galois conjugates of
$B$, and a Galois cohomology class attached to $B/K$.
We call the varieties having this property strongly modular.
The last section is devoted to the study of a family of abelian surfaces with quaternionic
multiplication.
As an illustration of the ways in which the general results of the paper can be applied
we prove the strong modularity of some particular abelian surfaces belonging to that family, and
we show how to find nontrivial examples of strongly modular varieties by twisting.
Keywords:Modular abelian varieties, $GL_2$type varieties, modular forms Categories:11G10, 11G18, 11F11 

15. CJM 2012 (vol 65 pp. 544)
 Deitmar, Anton; Horozov, Ivan

Iterated Integrals and Higher Order Invariants
We show that higher order invariants of smooth functions can be
written as linear combinations of full invariants times iterated
integrals.
The nonuniqueness of such a presentation is captured in the kernel of
the ensuing map from the tensor product. This kernel is computed
explicitly.
As a consequence, it turns out that higher order invariants are a free
module of the algebra of full invariants.
Keywords:higher order forms, iterated integrals Categories:14F35, 11F12, 55D35, 58A10 

16. CJM 2012 (vol 64 pp. 497)
 Li, WenWei

Le lemme fondamental pondÃ©rÃ© pour le groupe mÃ©taplectique
Dans cet article, on Ã©nonce une variante du lemme fondamental
pondÃ©rÃ© d'Arthur pour le groupe mÃ©taplectique de Weil, qui sera un
ingrÃ©dient indispensable de la stabilisation de la formule des
traces. Pour un corps de caractÃ©ristique rÃ©siduelle suffisamment
grande, on en donne une dÃ©monstration Ã l'aide de la mÃ©thode de
descente, qui est conditionnelle: on admet le lemme fondamental
pondÃ©rÃ© non standard sur les algÃ¨bres de Lie. Vu les travaux de
Chaudouard et Laumon, on s'attend Ã ce que cette condition soit
ultÃ©rieurement vÃ©rifiÃ©e.
Keywords:fundamental lemma, metaplectic group, endoscopy, trace formula Categories:11F70, 11F27, 22E50 

17. CJM 2011 (vol 65 pp. 22)
 Blomer, Valentin; Brumley, Farrell

Nonvanishing of $L$functions, the Ramanujan Conjecture, and Families of Hecke Characters
We prove a nonvanishing result for families of
$\operatorname{GL}_n\times\operatorname{GL}_n$ RankinSelberg $L$functions in the critical strip,
as one factor runs over twists by Hecke characters. As an
application, we simplify the proof, due to Luo, Rudnick, and Sarnak,
of the best known bounds towards the Generalized Ramanujan Conjecture
at the infinite places for cusp forms on $\operatorname{GL}_n$. A key ingredient is
the regularization of the units in residue classes by the use of an
Arakelov ray class group.
Keywords:nonvanishing, automorphic forms, Hecke characters, Ramanujan conjecture Categories:11F70, 11M41 

18. CJM 2011 (vol 64 pp. 1248)
 Gärtner, Jérôme

Darmon's Points and Quaternionic Shimura Varieties
In this paper, we generalize a conjecture due to Darmon and Logan in
an adelic setting. We study the relation between our construction and
Kudla's works on cycles on orthogonal Shimura varieties. This relation
allows us to conjecture a GrossKohnenZagier theorem for Darmon's
points.
Keywords:elliptic curves, StarkHeegner points, quaternionic Shimura varieties Categories:11G05, 14G35, 11F67, 11G40 

19. CJM 2011 (vol 64 pp. 588)
20. CJM 2011 (vol 64 pp. 1122)
 Seveso, Marco Adamo

$p$adic $L$functions and the Rationality of Darmon Cycles
Darmon cycles are a higher weight analogue of StarkHeegner points. They
yield local cohomology classes in the Deligne representation associated with a
cuspidal form on $\Gamma _{0}( N) $ of even weight $k_{0}\geq 2$.
They are conjectured to be the restriction of global cohomology classes in
the BlochKato Selmer group defined over narrow ring class fields attached
to a real quadratic field. We show that suitable linear combinations of them
obtained by genus characters satisfy these conjectures. We also prove $p$adic GrossZagier type formulas, relating the derivatives of $p$adic $L$functions of the weight variable attached to imaginary (resp. real)
quadratic fields to Heegner cycles (resp. Darmon cycles). Finally we express
the second derivative of the MazurKitagawa $p$adic $L$function of the
weight variable in terms of a global cycle defined over a quadratic
extension of $\mathbb{Q}$.
Categories:11F67, 14G05 

21. CJM 2011 (vol 64 pp. 282)
22. CJM 2011 (vol 63 pp. 1328)
 Gun, Sanoli; Murty, M. Ram; Rath, Purusottam

On a Conjecture of Chowla and Milnor
In this paper, we investigate a conjecture due to S. and P. Chowla and
its generalization by Milnor. These are related to the delicate
question of nonvanishing of $L$functions associated to periodic
functions at integers greater than $1$. We report on some progress in
relation to these conjectures. In a different vein, we link them to a
conjecture of Zagier on multiple zeta values and also to linear
independence of polylogarithms.
Categories:11F20, 11F11 

23. CJM 2011 (vol 63 pp. 1284)
 Dewar, Michael

NonExistence of Ramanujan Congruences in Modular Forms of Level Four
Ramanujan famously found congruences like $p(5n+4)\equiv 0
\operatorname{mod} 5$ for the partition
function. We provide a method to find all simple
congruences of this type in the coefficients of the inverse of a
modular form on $\Gamma_{1}(4)$ that is nonvanishing on the upper
half plane. This is applied to answer open questions about the
(non)existence of congruences in the generating functions for
overpartitions, crank differences, and 2colored $F$partitions.
Keywords:modular form, Ramanujan congruence, generalized Frobenius partition, overpartition, crank Categories:11F33, 11P83 

24. CJM 2011 (vol 63 pp. 1083)
 Kaletha, Tasho

Decomposition of Splitting Invariants in Split Real Groups
For a maximal torus in a quasisplit semisimple simplyconnected group over a local field of characteristic $0$,
Langlands and Shelstad constructed a
cohomological invariant called the splitting invariant, which is an important
component of their endoscopic transfer factors. We study this invariant in the
case of a split real group and prove a
decomposition theorem which expresses this invariant for a general torus as a product of the corresponding
invariants for simple tori. We also show how this reduction formula allows for the comparison of splitting invariants
between different tori in the given real group.
Keywords:endoscopy, real lie group, splitting invariant, transfer factor Categories:11F70, 22E47, 11S37, 11F72, 17B22 

25. CJM 2011 (vol 63 pp. 826)
 Errthum, Eric

Singular Moduli of Shimura Curves
The $j$function acts as a parametrization of the classical modular
curve. Its values at complex multiplication (CM) points are called
singular moduli and are algebraic integers. A Shimura curve is a
generalization of the modular curve and, if the Shimura curve has
genus~$0$, a rational parameterizing function exists and when
evaluated at a CM point is again algebraic over~$\mathbf{Q}$. This paper shows
that the coordinate maps given by N.~Elkies for the Shimura
curves associated to the quaternion algebras with discriminants $6$
and $10$ are Borcherds lifts of vectorvalued modular forms. This
property is then used to explicitly compute the rational norms of
singular moduli on these curves. This method not only verifies
conjectural values for the rational CM points, but also provides a way
of algebraically calculating the norms of CM points with arbitrarily
large negative discriminant.
Categories:11G18, 11F12 
