Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11F80 ( Galois representations )

  Expand all        Collapse all Results 1 - 6 of 6

1. CJM 2011 (vol 64 pp. 282)

Dahmen, Sander R.; Yazdani, Soroosh
Level Lowering Modulo Prime Powers and Twisted Fermat Equations
We discuss a clean level lowering theorem modulo prime powers for weight $2$ cusp forms. Furthermore, we illustrate how this can be used to completely solve certain twisted Fermat equations $ax^n+by^n+cz^n=0$.

Keywords:modular forms, level lowering, Diophantine equations
Categories:11D41, 11F33, 11F11, 11F80, 11G05

2. CJM 2010 (vol 63 pp. 277)

Ghate, Eknath; Vatsal, Vinayak
Locally Indecomposable Galois Representations
In a previous paper the authors showed that, under some technical conditions, the local Galois representations attached to the members of a non-CM family of ordinary cusp forms are indecomposable for all except possibly finitely many members of the family. In this paper we use deformation theoretic methods to give examples of non-CM families for which every classical member of weight at least two has a locally indecomposable Galois representation.


3. CJM 2008 (vol 60 pp. 1028)

Hamblen, Spencer
Lifting $n$-Dimensional Galois Representations
We investigate the problem of deforming $n$-dimensional mod $p$ Galois representations to characteristic zero. The existence of 2-dimensional deformations has been proven under certain conditions by allowing ramification at additional primes in order to annihilate a dual Selmer group. We use the same general methods to prove the existence of $n$-dimensional deformations. We then examine under which conditions we may place restrictions on the shape of our deformations at $p$, with the goal of showing that under the correct conditions, the deformations may have locally geometric shape. We also use the existence of these deformations to prove the existence as Galois groups over $\Q$ of certain infinite subgroups of $p$-adic general linear groups.


4. CJM 2008 (vol 60 pp. 491)

Bugeaud, Yann; Mignotte, Maurice; Siksek, Samir
A Multi-Frey Approach to Some Multi-Parameter Families of Diophantine Equations
We solve several multi-parameter families of binomial Thue equations of arbitrary degree; for example, we solve the equation \[ 5^u x^n-2^r 3^s y^n= \pm 1, \] in non-zero integers $x$, $y$ and positive integers $u$, $r$, $s$ and $n \geq 3$. Our approach uses several Frey curves simultaneously, Galois representations and level-lowering, new lower bounds for linear forms in $3$ logarithms due to Mignotte and a famous theorem of Bennett on binomial Thue equations.

Keywords:Diophantine equations, Frey curves, level-lowering, linear forms in logarithms, Thue equation
Categories:11F80, 11D61, 11D59, 11J86, 11Y50

5. CJM 2006 (vol 58 pp. 1203)

Heiermann, Volker
Orbites unipotentes et pôles d'ordre maximal de la fonction $\mu $ de Harish-Chandra
Dans un travail ant\'erieur, nous avions montr\'e que l'induite parabolique (normalis\'ee) d'une repr\'esentation irr\'eductible cuspidale $\sigma $ d'un sous-groupe de Levi $M$ d'un groupe $p$-adique contient un sous-quotient de carr\'e int\'egrable, si et seulement si la fonction $\mu $ de Harish-Chandra a un p\^ole en $\sigma $ d'ordre \'egal au rang parabolique de $M$. L'objet de cet article est d'interpr\'eter ce r\'esultat en termes de fonctorialit\'e de Langlands.

Categories:11F70, 11F80, 22E50

6. CJM 2005 (vol 57 pp. 1215)

Khare, Chandrashekhar
Reciprocity Law for Compatible Systems of Abelian $\bmod p$ Galois Representations
The main result of the paper is a {\em reciprocity law} which proves that compatible systems of semisimple, abelian mod $p$ representations (of arbitrary dimension) of absolute Galois groups of number fields, arise from Hecke characters. In the last section analogs for Galois groups of function fields of these results are explored, and a question is raised whose answer seems to require developments in transcendence theory in characteristic $p$.


© Canadian Mathematical Society, 2014 :