Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11F30 ( Fourier coefficients of automorphic forms )

  Expand all        Collapse all Results 1 - 8 of 8

1. CJM Online first

Kohen, Daniel; Pacetti, Ariel
Heegner points on Cartan non-split curves
Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.

Keywords:Cartan curves, Heegner points
Categories:11G05, 11F30

2. CJM 2011 (vol 63 pp. 634)

Lü, Guangshi
On Higher Moments of Fourier Coefficients of Holomorphic Cusp Forms
Let $S_{k}(\Gamma)$ be the space of holomorphic cusp forms of even integral weight $k$ for the full modular group. Let $\lambda_f(n)$ and $\lambda_g(n)$ be the $n$-th normalized Fourier coefficients of two holomorphic Hecke eigencuspforms $f(z), g(z) \in S_{k}(\Gamma)$, respectively. In this paper we are able to show the following results about higher moments of Fourier coefficients of holomorphic cusp forms.\newline (i) For any $\varepsilon>0$, we have \begin{equation*} \sum_{n\leq x}\lambda_f^5(n) \ll_{f,\varepsilon}x^{\frac{15}{16}+\varepsilon} \quad\text{and}\quad\sum_{n\leq x}\lambda_f^7(n) \ll_{f,\varepsilon}x^{\frac{63}{64}+\varepsilon}. \end{equation*} (ii) If $\operatorname{sym}^3\pi_f \ncong \operatorname{sym}^3\pi_g$, then for any $\varepsilon>0$, we have \begin{equation*} \sum_{n \leq x}\lambda_f^3(n)\lambda_g^3(n)\ll_{f,\varepsilon}x^{\frac{31}{32}+\varepsilon}; \end{equation*} If $\operatorname{sym}^2\pi_f \ncong \operatorname{sym}^2\pi_g$, then for any $\varepsilon>0$, we have \[ \sum_{n \leq x}\lambda_f^4(n)\lambda_g^2(n)=cx\log x+c'x+O_{f,\varepsilon}\bigl(x^{\frac{31}{32}+\varepsilon}\bigr); \] If $\operatorname{sym}^2\pi_f \ncong \operatorname{sym}^2\pi_g$ and $\operatorname{sym}^4\pi_f \ncong \operatorname{sym}^4\pi_g$, then for any $\varepsilon>0$, we have \[ \sum_{n \leq x}\lambda_f^4(n)\lambda_g^4(n)=xP(\log x)+O_{f,\varepsilon}\bigl(x^{\frac{127}{128}+\varepsilon}\bigr), \] where $P(x)$ is a polynomial of degree $3$.

Keywords: Fourier coefficients of cusp forms, symmetric power $L$-function
Categories:11F30, , , , 11F11, 11F66

3. CJM 2011 (vol 63 pp. 298)

Gun, Sanoli; Murty, V. Kumar
A Variant of Lehmer's Conjecture, II: The CM-case
Let $f$ be a normalized Hecke eigenform with rational integer Fourier coefficients. It is an interesting question to know how often an integer $n$ has a factor common with the $n$-th Fourier coefficient of $f$. It has been shown in previous papers that this happens very often. In this paper, we give an asymptotic formula for the number of integers $n$ for which $(n, a(n)) = 1$, where $a(n)$ is the $n$-th Fourier coefficient of a normalized Hecke eigenform $f$ of weight $2$ with rational integer Fourier coefficients and having complex multiplication.

Categories:11F11, 11F30

4. CJM 2009 (vol 62 pp. 157)

Masri, Riad
Special Values of Class Group $L$-Functions for CM Fields
Let $H$ be the Hilbert class field of a CM number field $K$ with maximal totally real subfield $F$ of degree $n$ over $\mathbb{Q}$. We evaluate the second term in the Taylor expansion at $s=0$ of the Galois-equivariant $L$-function $\Theta_{S_{\infty}}(s)$ associated to the unramified abelian characters of $\operatorname{Gal}(H/K)$. This is an identity in the group ring $\mathbb{C}[\operatorname{Gal}(H/K)]$ expressing $\Theta^{(n)}_{S_{\infty}}(0)$ as essentially a linear combination of logarithms of special values $\{\Psi(z_{\sigma})\}$, where $\Psi\colon \mathbb{H}^{n} \rightarrow \mathbb{R}$ is a Hilbert modular function for a congruence subgroup of $SL_{2}(\mathcal{O}_{F})$ and $\{z_{\sigma}: \sigma \in \operatorname{Gal}(H/K)\}$ are CM points on a universal Hilbert modular variety. We apply this result to express the relative class number $h_{H}/h_{K}$ as a rational multiple of the determinant of an $(h_{K}-1) \times (h_{K}-1)$ matrix of logarithms of ratios of special values $\Psi(z_{\sigma})$, thus giving rise to candidates for higher analogs of elliptic units. Finally, we obtain a product formula for $\Psi(z_{\sigma})$ in terms of exponentials of special values of $L$-functions.

Keywords:Artin $L$-function, CM point, Hilbert modular function, Rubin-Stark conjecture
Categories:11R42, 11F30

5. CJM 2007 (vol 59 pp. 1323)

Ginzburg, David; Lapid, Erez
On a Conjecture of Jacquet, Lai, and Rallis: Some Exceptional Cases
We prove two spectral identities. The first one relates the relative trace formula for the spherical variety $\GSpin(4,3)/G_2$ with a weighted trace formula for $\GL_2$. The second relates a spherical variety pertaining to $F_4$ to one of $\GSp(6)$. These identities are in accordance with a conjecture made by Jacquet, Lai, and Rallis, and are obtained without an appeal to a geometric comparison.

Categories:11F70, 11F72, 11F30, 11F67

6. CJM 2007 (vol 59 pp. 673)

Ash, Avner; Friedberg, Solomon
Hecke $L$-Functions and the Distribution of Totally Positive Integers
Let $K$ be a totally real number field of degree $n$. We show that the number of totally positive integers (or more generally the number of totally positive elements of a given fractional ideal) of given trace is evenly distributed around its expected value, which is obtained from geometric considerations. This result depends on unfolding an integral over a compact torus.

Keywords:Eisenstein series, toroidal integral, Fourier series, Hecke $L$-function, totally positive integer, trace
Categories:11M41, 11F30, , 11F55, 11H06, 11R47

7. CJM 2005 (vol 57 pp. 1102)

Weston, Tom
Power Residues of Fourier Coefficients of Modular Forms
Let $\rho \colon G_{\Q} \to \GL_{n}(\Ql)$ be a motivic $\ell$-adic Galois representation. For fixed $m > 1$ we initiate an investigation of the density of the set of primes $p$ such that the trace of the image of an arithmetic Frobenius at $p$ under $\rho$ is an $m$-th power residue modulo $p$. Based on numerical investigations with modular forms we conjecture (with Ramakrishna) that this density equals $1/m$ whenever the image of $\rho$ is open. We further conjecture that for such $\rho$ the set of these primes $p$ is independent of any set defined by Cebatorev-style Galois-theoretic conditions (in an appropriate sense). We then compute these densities for certain $m$ in the complementary case of modular forms of CM-type with rational Fourier coefficients; our proofs are a combination of the Cebatorev density theorem (which does apply in the CM case) and reciprocity laws applied to Hecke characters. We also discuss a potential application (suggested by Ramakrishna) to computing inertial degrees at $p$ in abelian extensions of imaginary quadratic fields unramified away from $p$.

Categories:11F30, 11G15, 11A15

8. CJM 2005 (vol 57 pp. 449)

Alkan, Emre
On the Sizes of Gaps in the Fourier Expansion of Modular Forms
Let $f= \sum_{n=1}^{\infty} a_f(n)q^n$ be a cusp form with integer weight $k \geq 2$ that is not a linear combination of forms with complex multiplication. For $n \geq 1$, let $$ i_f(n)=\begin{cases}\max\{ i : a_f(n+j)=0 \text{ for all } 0 \leq j \leq i\}&\text{if $a_f(n)=0$,}\\ 0&\text{otherwise}.\end{cases} $$ Concerning bounded values of $i_f(n)$ we prove that for $\epsilon >0$ there exists $M = M(\epsilon,f)$ such that $\# \{n \leq x : i_f(n) \leq M\} \geq (1 - \epsilon) x$. Using results of Wu, we show that if $f$ is a weight 2 cusp form for an elliptic curve without complex multiplication, then $i_f(n) \ll_{f, \epsilon} n^{\frac{51}{134} + \epsilon}$. Using a result of David and Pappalardi, we improve the exponent to $\frac{1}{3}$ for almost all newforms associated to elliptic curves without complex multiplication. Inspired by a classical paper of Selberg, we also investigate $i_f(n)$ on the average using well known bounds on the Riemann Zeta function.


© Canadian Mathematical Society, 2015 :