Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11B37 ( Recurrences {For applications to special functions, see 33-XX} )

  Expand all        Collapse all Results 1 - 2 of 2

1. CJM Online first

Stange, Katherine E.
Integral Points on Elliptic Curves and Explicit Valuations of Division Polynomials
Assuming Lang's conjectured lower bound on the heights of non-torsion points on an elliptic curve, we show that there exists an absolute constant $C$ such that for any elliptic curve $E/\mathbb{Q}$ and non-torsion point $P \in E(\mathbb{Q})$, there is at most one integral multiple $[n]P$ such that $n \gt C$. The proof is a modification of a proof of Ingram giving an unconditional but not uniform bound. The new ingredient is a collection of explicit formulae for the sequence $v(\Psi_n)$ of valuations of the division polynomials. For $P$ of non-singular reduction, such sequences are already well described in most cases, but for $P$ of singular reduction, we are led to define a new class of sequences called \emph{elliptic troublemaker sequences}, which measure the failure of the Néron local height to be quadratic. As a corollary in the spirit of a conjecture of Lang and Hall, we obtain a uniform upper bound on $\widehat{h}(P)/h(E)$ for integer points having two large integral multiples.

Keywords:elliptic divisibility sequence, Lang's conjecture, height functions
Categories:11G05, 11G07, 11D25, 11B37, 11B39, 11Y55, 11G50, 11H52

2. CJM 2007 (vol 59 pp. 127)

Lamzouri, Youness
Smooth Values of the Iterates of the Euler Phi-Function
Let $\phi(n)$ be the Euler phi-function, define $\phi_0(n) = n$ and $\phi_{k+1}(n)=\phi(\phi_{k}(n))$ for all $k\geq 0$. We will determine an asymptotic formula for the set of integers $n$ less than $x$ for which $\phi_k(n)$ is $y$-smooth, conditionally on a weak form of the Elliott--Halberstam conjecture.

Categories:11N37, 11B37, 34K05, 45J05

© Canadian Mathematical Society, 2015 :