CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11 ( Number theory )

  Expand all        Collapse all Results 76 - 100 of 226

76. CJM 2009 (vol 61 pp. 1341)

Rivoal, Tanguy
Simultaneous Polynomial Approximations of the Lerch Function
We construct bivariate polynomial approximations of the Lerch function that for certain specialisations of the variables and parameters turn out to be Hermite--Pad\'e approximants either of the polylogarithms or of Hurwitz zeta functions. In the former case, we recover known results, while in the latter the results are new and generalise some recent works of Beukers and Pr\'evost. Finally, we make a detailed comparison of our work with Beukers'. Such constructions are useful in the arithmetical study of the values of the Riemann zeta function at integer points and of the Kubota--Leopold $p$-adic zeta function.

Categories:41A10, 41A21, 11J72

77. CJM 2009 (vol 61 pp. 1118)

Pontreau, Corentin
Petits points d'une surface
Pour toute sous-vari\'et\'e g\'eom\'etriquement irr\'eductible $V$ du grou\-pe multiplicatif $\mathbb{G}_m^n$, on sait qu'en dehors d'un nombre fini de translat\'es de tores exceptionnels inclus dans $V$, tous les points sont de hauteur minor\'ee par une certaine quantit\'e $q(V)^{-1}>0$. On conna\^it de plus une borne sup\'erieure pour la somme des degr\'es de ces translat\'es de tores pour des valeurs de $q(V)$ polynomiales en le degr\'e de $V$. Ceci n'est pas le cas si l'on exige une minoration quasi-optimale pour la hauteur des points de $V$, essentiellement lin\'eaire en l'inverse du degr\'e. Nous apportons ici une r\'eponse partielle \`a ce probl\`eme\,: nous donnons une majoration de la somme des degr\'es de ces translat\'es de sous-tores de codimension $1$ d'une hypersurface $V$. Les r\'esultats, obtenus dans le cas de $\mathbb{G}_m^3$, mais compl\`etement explicites, peuvent toutefois s'\'etendre \`a $\mathbb{G}_m^n$, moyennant quelques petites complications inh\'erentes \`a la dimension $n$.

Keywords:Hauteur normalisée, groupe multiplicatif, problème de Lehmer, petits points
Categories:11G50, 11J81, 14G40

78. CJM 2009 (vol 61 pp. 1073)

Griffiths, Ross; Lescop, Mikaël
On the $2$-Rank of the Hilbert Kernel of Number Fields
Let $E/F$ be a quadratic extension of number fields. In this paper, we show that the genus formula for Hilbert kernels, proved by M. Kolster and A. Movahhedi, gives the $2$-rank of the Hilbert kernel of $E$ provided that the $2$-primary Hilbert kernel of $F$ is trivial. However, since the original genus formula is not explicit enough in a very particular case, we first develop a refinement of this formula in order to employ it in the calculation of the $2$-rank of $E$ whenever $F$ is totally real with trivial $2$-primary Hilbert kernel. Finally, we apply our results to quadratic, bi-quadratic, and tri-quadratic fields which include a complete $2$-rank formula for the family of fields $\Q(\sqrt{2},\sqrt{\delta})$ where $\delta$ is a squarefree integer.

Categories:11R70, 19F15

79. CJM 2009 (vol 61 pp. 828)

Howard, Benjamin
Twisted Gross--Zagier Theorems
The theorems of Gross--Zagier and Zhang relate the N\'eron--Tate heights of complex multiplication points on the modular curve $X_0(N)$ (and on Shimura curve analogues) with the central derivatives of automorphic $L$-function. We extend these results to include certain CM points on modular curves of the form $X(\Gamma_0(M)\cap\Gamma_1(S))$ (and on Shimura curve analogues). These results are motivated by applications to Hida theory that can be found in the companion article "Central derivatives of $L$-functions in Hida families", Math.\ Ann.\ \textbf{399}(2007), 803--818.

Categories:11G18, 14G35

80. CJM 2009 (vol 61 pp. 779)

Grbac, Neven
Residual Spectra of Split Classical Groups and their Inner Forms
This paper is concerned with the residual spectrum of the hermitian quaternionic classical groups $G_n'$ and $H_n'$ defined as algebraic groups for a quaternion algebra over an algebraic number field. Groups $G_n'$ and $H_n'$ are not quasi-split. They are inner forms of the split groups $\SO_{4n}$ and $\Sp_{4n}$. Hence, the parts of the residual spectrum of $G_n'$ and $H_n'$ obtained in this paper are compared to the corresponding parts for the split groups $\SO_{4n}$ and $\Sp_{4n}$.

Categories:11F70, 22E55

81. CJM 2009 (vol 61 pp. 617)

Kim, Wook
Square Integrable Representations and the Standard Module Conjecture for General Spin Groups
In this paper we study square integrable representations and $L$-functions for quasisplit general spin groups over a $p$-adic field. In the first part, the holomorphy of $L$-functions in a half plane is proved by using a variant form of Casselman's square integrability criterion and the Langlands--Shahidi method. The remaining part focuses on the proof of the standard module conjecture. We generalize Mui\'c's idea via the Langlands--Shahidi method towards a proof of the conjecture. It is used in the work of M. Asgari and F. Shahidi on generic transfer for general spin groups.

Categories:11F70, 11F85

82. CJM 2009 (vol 61 pp. 518)

Belliard, Jean-Robert
Global Units Modulo Circular Units: Descent Without Iwasawa's Main Conjecture
Iwasawa's classical asymptotical formula relates the orders of the $p$-parts $X_n$ of the ideal class groups along a $\mathbb{Z}_p$-extension $F_\infty/F$ of a number field $F$ to Iwasawa structural invariants $\la$ and $\mu$ attached to the inverse limit $X_\infty=\varprojlim X_n$. It relies on ``good" descent properties satisfied by $X_n$. If $F$ is abelian and $F_\infty$ is cyclotomic, it is known that the $p$-parts of the orders of the global units modulo circular units $U_n/C_n$ are asymptotically equivalent to the $p$-parts of the ideal class numbers. This suggests that these quotients $U_n/C_n$, so to speak unit class groups, also satisfy good descent properties. We show this directly, \emph{i.e.,} without using Iwasawa's Main Conjecture.

Category:11R23

83. CJM 2009 (vol 61 pp. 481)

Banks, William D.; Garaev, Moubariz Z.; Luca, Florian; Shparlinski, Igor E.
Uniform Distribution of Fractional Parts Related to Pseudoprimes
We estimate exponential sums with the Fermat-like quotients $$ f_g(n) = \frac{g^{n-1} - 1}{n} \quad\text{and}\quad h_g(n)=\frac{g^{n-1}-1}{P(n)}, $$ where $g$ and $n$ are positive integers, $n$ is composite, and $P(n)$ is the largest prime factor of $n$. Clearly, both $f_g(n)$ and $h_g(n)$ are integers if $n$ is a Fermat pseudoprime to base $g$, and if $n$ is a Carmichael number, this is true for all $g$ coprime to $n$. Nevertheless, our bounds imply that the fractional parts $\{f_g(n)\}$ and $\{h_g(n)\}$ are uniformly distributed, on average over~$g$ for $f_g(n)$, and individually for $h_g(n)$. We also obtain similar results with the functions ${\widetilde f}_g(n) = gf_g(n)$ and ${\widetilde h}_g(n) = gh_g(n)$.

Categories:11L07, 11N37, 11N60

84. CJM 2009 (vol 61 pp. 583)

Hajir, Farshid
Algebraic Properties of a Family of Generalized Laguerre Polynomials
We study the algebraic properties of Generalized Laguerre Polynomials for negative integral values of the parameter. For integers $r,n\geq 0$, we conjecture that $L_n^{(-1-n-r)}(x) = \sum_{j=0}^n \binom{n-j+r}{n-j}x^j/j!$ is a $\Q$-irreducible polynomial whose Galois group contains the alternating group on $n$ letters. That this is so for $r=n$ was conjectured in the 1950's by Grosswald and proven recently by Filaseta and Trifonov. It follows from recent work of Hajir and Wong that the conjecture is true when $r$ is large with respect to $n\geq 5$. Here we verify it in three situations: i) when $n$ is large with respect to $r$, ii) when $r \leq 8$, and iii) when $n\leq 4$. The main tool is the theory of $p$-adic Newton Polygons.

Categories:11R09, 05E35

85. CJM 2009 (vol 61 pp. 674)

Pollack, David; Pollack, Robert
A Construction of Rigid Analytic Cohomology Classes for Congruence Subgroups of $\SL_3(\mathbb Z)$
We give a constructive proof, in the special case of ${\rm GL}_3$, of a theorem of Ash and Stevens which compares overconvergent cohomology to classical cohomology. Namely, we show that every ordinary classical Hecke-eigenclass can be lifted uniquely to a rigid analytic eigenclass. Our basic method builds on the ideas of M. Greenberg; we first form an arbitrary lift of the classical eigenclass to a distribution-valued cochain. Then, by appropriately iterating the $U_p$-operator, we produce a cocycle whose image in cohomology is the desired eigenclass. The constructive nature of this proof makes it possible to perform computer computations to approximate these interesting overconvergent eigenclasses.

Categories:11F75, 11F85

86. CJM 2009 (vol 61 pp. 465)

Woodford, Roger
On Partitions into Powers of Primes and Their Difference Functions
In this paper, we extend the approach first outlined by Hardy and Ramanujan for calculating the asymptotic formulae for the number of partitions into $r$-th powers of primes, $p_{\mathbb{P}^{(r)}}(n)$, to include their difference functions. In doing so, we rectify an oversight of said authors, namely that the first difference function is perforce positive for all values of $n$, and include the magnitude of the error term.

Categories:05A17, 11P81

87. CJM 2009 (vol 61 pp. 395)

Moriyama, Tomonori
$L$-Functions for $\GSp(2)\times \GL(2)$: Archimedean Theory and Applications
Let $\Pi$ be a generic cuspidal automorphic representation of $\GSp(2)$ defined over a totally real algebraic number field $\gfk$ whose archimedean type is either a (limit of) large discrete series representation or a certain principal series representation. Through explicit computation of archimedean local zeta integrals, we prove the functional equation of tensor product $L$-functions $L(s,\Pi \times \sigma)$ for an arbitrary cuspidal automorphic representation $\sigma$ of $\GL(2)$. We also give an application to the spinor $L$-function of $\Pi$.

Categories:11F70, 11F41, 11F46

88. CJM 2009 (vol 61 pp. 336)

Garaev, M. Z.
The Large Sieve Inequality for the Exponential Sequence $\lambda^{[O(n^{15/14+o(1)})]}$ Modulo Primes
Let $\lambda$ be a fixed integer exceeding $1$ and $s_n$ any strictly increasing sequence of positive integers satisfying $s_n\le n^{15/14+o(1)}.$ In this paper we give a version of the large sieve inequality for the sequence $\lambda^{s_n}.$ In particular, we obtain nontrivial estimates of the associated trigonometric sums ``on average" and establish equidistribution properties of the numbers $\lambda^{s_n} , n\le p(\log p)^{2+\varepsilon}$, modulo $p$ for most primes $p.$

Keywords:Large sieve, exponential sums
Categories:11L07, 11N36

89. CJM 2009 (vol 61 pp. 264)

Bell, J. P.; Hare, K. G.
On $\BbZ$-Modules of Algebraic Integers
Let $q$ be an algebraic integer of degree $d \geq 2$. Consider the rank of the multiplicative subgroup of $\BbC^*$ generated by the conjugates of $q$. We say $q$ is of {\em full rank} if either the rank is $d-1$ and $q$ has norm $\pm 1$, or the rank is $d$. In this paper we study some properties of $\BbZ[q]$ where $q$ is an algebraic integer of full rank. The special cases of when $q$ is a Pisot number and when $q$ is a Pisot-cyclotomic number are also studied. There are four main results. \begin{compactenum}[\rm(1)] \item If $q$ is an algebraic integer of full rank and $n$ is a fixed positive integer, then there are only finitely many $m$ such that $\disc\left(\BbZ[q^m]\right)=\disc\left(\BbZ[q^n]\right)$. \item If $q$ and $r$ are algebraic integers of degree $d$ of full rank and $\BbZ[q^n] = \BbZ[r^n]$ for infinitely many $n$, then either $q = \omega r'$ or $q={\rm Norm}(r)^{2/d}\omega/r'$, where $r'$ is some conjugate of $r$ and $\omega$ is some root of unity. \item Let $r$ be an algebraic integer of degree at most $3$. Then there are at most $40$ Pisot numbers $q$ such that $\BbZ[q] = \BbZ[r]$. \item There are only finitely many Pisot-cyclotomic numbers of any fixed order. \end{compactenum}

Keywords:algebraic integers, Pisot numbers, full rank, discriminant
Categories:11R04, 11R06

90. CJM 2009 (vol 61 pp. 373)

McKee, Mark
An Infinite Order Whittaker Function
In this paper we construct a flat smooth section of an induced space $I(s,\eta)$ of $SL_2(\mathbb{R})$ so that the attached Whittaker function is not of finite order. An asymptotic method of classical analysis is used.

Categories:11F70, 22E45, 41A60, 11M99, 30D15, 33C15

91. CJM 2009 (vol 61 pp. 165)

Laurent, Michel
Exponents of Diophantine Approximation in Dimension Two
Let $\Theta=(\alpha,\beta)$ be a point in $\bR^2$, with $1,\alpha, \beta$ linearly independent over $\bQ$. We attach to $\Theta$ a quadruple $\Omega(\Theta)$ of exponents that measure the quality of approximation to $\Theta$ both by rational points and by rational lines. The two ``uniform'' components of $\Omega(\Theta)$ are related by an equation due to Jarn\'\i k, and the four exponents satisfy two inequalities that refine Khintchine's transference principle. Conversely, we show that for any quadruple $\Omega$ fulfilling these necessary conditions, there exists a point $\Theta\in \bR^2$ for which $\Omega(\Theta) =\Omega$.

Categories:11J13, 11J70

92. CJM 2009 (vol 61 pp. 3)

Behrend, Kai; Dhillon, Ajneet
Connected Components of Moduli Stacks of Torsors via Tamagawa Numbers
Let $X$ be a smooth projective geometrically connected curve over a finite field with function field $K$. Let $\G$ be a connected semisimple group scheme over $X$. Under certain hypotheses we prove the equality of two numbers associated with $\G$. The first is an arithmetic invariant, its Tamagawa number. The second is a geometric invariant, the number of connected components of the moduli stack of $\G$-torsors on $X$. Our results are most useful for studying connected components as much is known about Tamagawa numbers.

Categories:11E, 11R, 14D, 14H

93. CJM 2009 (vol 61 pp. 141)

Green, Ben; Konyagin, Sergei
On the Littlewood Problem Modulo a Prime
Let $p$ be a prime, and let $f \from \mathbb{Z}/p\mathbb{Z} \rightarrow \mathbb{R}$ be a function with $\E f = 0$ and $\Vert \widehat{f} \Vert_1 \leq 1$. Then $\min_{x \in \Zp} |f(x)| = O(\log p)^{-1/3 + \epsilon}$. One should think of $f$ as being ``approximately continuous''; our result is then an ``approximate intermediate value theorem''. As an immediate consequence we show that if $A \subseteq \Zp$ is a set of cardinality $\lfloor p/2\rfloor$, then $\sum_r |\widehat{1_A}(r)| \gg (\log p)^{1/3 - \epsilon}$. This gives a result on a ``mod $p$'' analogue of Littlewood's well-known problem concerning the smallest possible $L^1$-norm of the Fourier transform of a set of $n$ integers. Another application is to answer a question of Gowers. If $A \subseteq \Zp$ is a set of size $\lfloor p/2 \rfloor$, then there is some $x \in \Zp$ such that \[ | |A \cap (A + x)| - p/4 | = o(p).\]

Categories:42A99, 11B99

94. CJM 2008 (vol 60 pp. 1406)

Ricotta, Guillaume; Vidick, Thomas
Hauteur asymptotique des points de Heegner
Geometric intuition suggests that the N\'{e}ron--Tate height of Heegner points on a rational elliptic curve $E$ should be asymptotically governed by the degree of its modular parametrisation. In this paper, we show that this geometric intuition asymptotically holds on average over a subset of discriminants. We also study the asymptotic behaviour of traces of Heegner points on average over a subset of discriminants and find a difference according to the rank of the elliptic curve. By the Gross--Zagier formulae, such heights are related to the special value at the critical point for either the derivative of the Rankin--Selberg convolution of $E$ with a certain weight one theta series attached to the principal ideal class of an imaginary quadratic field or the twisted $L$-function of $E$ by a quadratic Dirichlet character. Asymptotic formulae for the first moments associated with these $L$-series and $L$-functions are proved, and experimental results are discussed. The appendix contains some conjectural applications of our results to the problem of the discretisation of odd quadratic twists of elliptic curves.

Categories:11G50, 11M41

95. CJM 2008 (vol 60 pp. 1267)

Blake, Ian F.; Murty, V. Kumar; Xu, Guangwu
Nonadjacent Radix-$\tau$ Expansions of Integers in Euclidean Imaginary Quadratic Number Fields
In his seminal papers, Koblitz proposed curves for cryptographic use. For fast operations on these curves, these papers also initiated a study of the radix-$\tau$ expansion of integers in the number fields $\Q(\sqrt{-3})$ and $\Q(\sqrt{-7})$. The (window) nonadjacent form of $\tau$-expansion of integers in $\Q(\sqrt{-7})$ was first investigated by Solinas. For integers in $\Q(\sqrt{-3})$, the nonadjacent form and the window nonadjacent form of the $\tau$-expansion were studied. These are used for efficient point multiplications on Koblitz curves. In this paper, we complete the picture by producing the (window) nonadjacent radix-$\tau$ expansions for integers in all Euclidean imaginary quadratic number fields.

Keywords:algebraic integer, radix expression, window nonadjacent expansion, algorithm, point multiplication of elliptic curves, cryptography
Categories:11A63, 11R04, 11Y16, 11Y40, 14G50

96. CJM 2008 (vol 60 pp. 1306)

Mui\'c, Goran
Theta Lifts of Tempered Representations for Dual Pairs $(\Sp_{2n}, O(V))$
This paper is the continuation of our previous work on the explicit determination of the structure of theta lifts for dual pairs $(\Sp_{2n}, O(V))$ over a non-archimedean field $F$ of characteristic different than $2$, where $n$ is the split rank of $\Sp_{2n}$ and the dimension of the space $V$ (over $F$) is even. We determine the structure of theta lifts of tempered representations in terms of theta lifts of representations in discrete series.

Categories:22E35, 22E50, 11F70

97. CJM 2008 (vol 60 pp. 1149)

Petersen, Kathleen L.; Sinclair, Christopher D.
Conjugate Reciprocal Polynomials with All Roots on the Unit Circle
We study the geometry, topology and Lebesgue measure of the set of monic conjugate reciprocal polynomials of fixed degree with all roots on the unit circle. The set of such polynomials of degree $N$ is naturally associated to a subset of $\R^{N-1}$. We calculate the volume of this set, prove the set is homeomorphic to the $N-1$ ball and that its isometry group is isomorphic to the dihedral group of order $2N$.

Categories:11C08, 28A75, 15A52, 54H10, 58D19

98. CJM 2008 (vol 60 pp. 975)

Boca, Florin P.
An AF Algebra Associated with the Farey Tessellation
We associate with the Farey tessellation of the upper half-plane an AF algebra $\AA$ encoding the ``cutting sequences'' that define vertical geodesics. The Effros--Shen AF algebras arise as quotients of $\AA$. Using the path algebra model for AF algebras we construct, for each $\tau \in \big(0,\frac{1}{4}\big]$, projections $(E_n)$ in $\AA$ such that $E_n E_{n\pm 1}E_n \leq \tau E_n$.

Categories:46L05, 11A55, 11B57, 46L55, 37E05, 82B20

99. CJM 2008 (vol 60 pp. 1028)

Hamblen, Spencer
Lifting $n$-Dimensional Galois Representations
We investigate the problem of deforming $n$-dimensional mod $p$ Galois representations to characteristic zero. The existence of 2-dimensional deformations has been proven under certain conditions by allowing ramification at additional primes in order to annihilate a dual Selmer group. We use the same general methods to prove the existence of $n$-dimensional deformations. We then examine under which conditions we may place restrictions on the shape of our deformations at $p$, with the goal of showing that under the correct conditions, the deformations may have locally geometric shape. We also use the existence of these deformations to prove the existence as Galois groups over $\Q$ of certain infinite subgroups of $p$-adic general linear groups.

Category:11F80

100. CJM 2008 (vol 60 pp. 790)

Blasco, Laure
Types, paquets et changement de base : l'exemple de $U(2,1)(F_0)$. I. Types simples maximaux et paquets singletons
Soit $F_0$ un corps local non archim\'edien de caract\'eristique nulle et de ca\-rac\-t\'eristique r\'esiduelle impaire. J. Rogawski a montr\'e l'existence du changement de base entre le groupe unitaire en trois variables $U(2,1)(F_{0})$, d\'efini relativement \`a une extension quadratique $F$ de $F_{0}$, et le groupe lin\'eaire $GL(3,F)$. Par ailleurs, nous avons d\'ecrit les repr\'esentations supercuspidales irr\'eductibles de $U(2,1)(F_{0})$ comme induites \`a partir d'un sous-groupe compact ouvert de $U(2,1)(F_{0})$, description analogue \`a celle des repr\'esentations admissibles irr\'eductibles de $GL(3,F)$ obtenue par C. Bushnell et P. Kutzko. A partir de ces descriptions, nous construisons explicitement le changement de base des repr\'esentations tr\`es cuspidales de $U(2,1)(F_{0})$.

Categories:22E50, 11F70
Page
   1 ... 3 4 5 ... 10    

© Canadian Mathematical Society, 2015 : https://cms.math.ca/